CoCoA:Minimalize
From ApCoCoAWiki
Minimalize
remove redundant generators
Description
In the inhomogeneous case it removes redundant generators from the
ideal or module contained in X, storing the result in X, i.e. the
original ideal or module is overwritten.
In the homogeneous case, it obtains a generating set with smallest
possible cardinality. The minimal set of generators found by CoCoA is
not necessarily a subset of the given generators. As with the inhomogeneous case, it overwrites its argument.
The coefficient ring is assumed to be a field.
The similar function <ttref>Minimalized</ttref> performs the same
operation, but returns the minimalized ideal or module and does not
modify the argument.
Example
Use R ::= Q[x,y,z]; I := Ideal(x-y^2,z-y^5,x^5-z^2); I; Ideal(-y^2 + x, -y^5 + z, x^5 - z^2) ------------------------------- Minimalize(I); I; Ideal(-y^2 + x, -y^5 + z) ------------------------------- J := Ideal(x, x-y, y-z, z^2); Minimalized(J); Ideal(y - z, x - z, z) -------------------------------
Syntax
Minimalize(X:IDEAL):NULL Minimalize(X:MODULE):NULL where X is a variable containing an ideal or module.
<type>ideal</type> <type>module</type>