CoCoA:GBM
From ApCoCoAWiki
GBM
intersection of ideals for zero-dimensional schemes
Description
This function computes the intersection of ideals corresponding to
zero-dimensional schemes: GBM is for affine schemes, and <ttref>HGBM</ttref> for
projective schemes. The list L must be a list of ideals. The function <ttref>IntersectionList</ttref> should be used for computing the intersection of a collection of general ideals.
The name GBM comes from the name of the algorithm used: Generalized
Buchberger-Moeller.
Example
Use Q[x,y,z]; I1 := IdealOfPoints([[1,2,1], [0,1,0]]); -- a simple affine scheme I2 := IdealOfPoints([[1,1,1], [2,0,1]])^2; -- another affine scheme GBM([I1,I2]); -- intersect the ideals Ideal(xz + yz - z^2 - x - y + 1, z^3 - 2z^2 + z, yz^2 - 2yz - z^2 + y + 2z - 1, y^2z - y^2 - yz + y, xy^2 + y^3 - 2x^2 - 5xy - 5y^2 + 2z^2 + 8x + 10y - 4z - 6, x^2y - y^3 + 2x^2 + 2xy + 4y^2 - 3z^2 - 8x - 8y + 6z + 5, x^3 + y^3 - 7x^2 - 5xy - 4y^2 + 5z^2 + 16x + 10y - 10z - 7, y^4 - 2y^3 - 4x^2 - 8xy - 3y^2 + 4z^2 + 16x + 16y - 8z - 12) -------------------------------
Syntax
GBM(L:LIST):IDEAL
Finite Point Sets: Buchberger-Moeller
IdealAndSeparatorsOfProjectivePoints
<type>groebner</type> <type>ideal</type> <type>list</type> <type>points</type>