ApCoCoA-1:BBSGen.TraceSyzStep
From ApCoCoAWiki
This article is about a function from ApCoCoA-1. |
BBSGen.TraceSyzStep
This function computes the trace polynomial T_{Pi,X} with respect to a given term Pi and a variable from ring K[x_1,...,x_N].(see BBSGen.TraceSyzFull)
Syntax
BBSGen.TraceSyzStep(Pi,X,OO,BO,N); BBSGen.TraceSyzStep(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST
Description
Note the following: The chosen variable must be a divisor of the term Pi. Pi must be a product of at least two different indeterminates otherwise the result is 0.
@param The term Pi from K[x_1,...,x_N], the distinguished variable of choice from {x_1,...,x_N}, order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N].
@return Trace polynomial T_{Pi,X} with respect to a term Pi and a variable X.
Example
Use R::=QQ[x[1..2]]; OO:=$apcocoa/borderbasis.Box([1,1]); BO:=$apcocoa/borderbasis.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Pi:=x[1]^2x[2]; X:=x[1]; ------------Choice of the Indeterminate Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.TraceSyzStep(Pi,X,OO,BO,N); c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] + c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + t[1,2,1,3] + t[1,2,2,4] -------------------------------