ApCoCoA-1:Modular group
From ApCoCoAWiki
Description
The Modular group has the following representation:
PSL(2,Z) = <a,b | a^2 = (ab)^3 = 1 >
Reference
Platonic tilings of Riemann surfaces: The Modular Group, Gerard Westendorp
Computation
/*Use the ApCoCoA package ncpoly.*/ // a^{-1} is a and b is invers to d Use ZZ/(2)[a,b,d]; NC.SetOrdering("LLEX"); Define CreateRelationsModular() Relations:=[]; // add the invers relations Append(Relations,[[b,d],[1]]); Append(Relations,[[d,b],[1]]); // add the relation a^2 = 1 Append(Relations,[[a^2],[1]]); // add the relation (ab)^3 = 1 Append(Relations,[[a,b,a,b,a,b],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsModular(); GB:=NC.GB(Relations);
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-01-24" createdBy="strohmeier"> <vars>a,b,d</vars> <basis> <ncpoly>b*d-1</ncpoly> <ncpoly>d*b-1</ncpoly> <ncpoly>a*a-1</ncpoly> <ncpoly>(a*b)^3-1</ncpoly> </basis> <Comment>Modular_group</Comment> </FREEALGEBRA>