ApCoCoA-1:Alternating groups
From ApCoCoAWiki
Revision as of 16:54, 6 March 2014 by StrohmeierB (talk | contribs)
Description
The alternating groups is the group of all even permutations of a finite set. Every alternating group is a subgroups of the correspondent symmetric group. A finite representation is given by:
A_{n+2} = <x_{1},..x_{n} | x_{i}^{3} = (x_{i}x_{j})^2 = 1 for every i != j>
Reference
PRESENTATIONS OF FINITE SIMPLE GROUPS: A COMPUTATIONAL APPROACH R. M. GURALNICK, W. M. KANTOR, M. KASSABOV, AND A. LUBOTZKY
Computation
/*Use the ApCoCoA package ncpoly.*/ // Number of alternating group MEMORY.N:=3; Use ZZ/(2)[a[1..MEMORY.N]]; NC.SetOrdering("LLEX"); Define CreateRelationsAlternating() Relations:=[]; // add the relation a_{i}^{3} = 1 For Index0 := 1 To MEMORY.N Do Append(Relations,[[a[Index0]^3],[1]]); EndFor; // add the relation (a_{i}a_{j})^2 = 1 for every i != j For Index1 := 1 To MEMORY.N Do For Index2 := 1 To MEMORY.N Do If (Index1 <> Index2) Then Append(Relations,[[a[Index1],a[Index2],a[Index1],a[Index2]],[1]]); EndIf; EndFor; EndFor; Return Relations; EndDefine; Relations:=CreateRelationsAlternating(); Gb:=NC.GB(Relations);
Examples in Symbolic Data Format
Alternating group 3
<FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> <vars>a1,a2,a3</vars> <basis> <ncpoly>a1^3-1</ncpoly> <ncpoly>a2^3-1</ncpoly> <ncpoly>a3^3-1</ncpoly> <ncpoly>a1*a2*a1*a2-1</ncpoly> <ncpoly>a1*a3*a1*a3-1</ncpoly> <ncpoly>a2*a1*a2*a1-1</ncpoly> <ncpoly>a2*a3*a2*a3-1</ncpoly> <ncpoly>a3*a1*a3*a1-1</ncpoly> <ncpoly>a3*a2*a3*a2-1</ncpoly> </basis> <Comment>Alternating_group_3</Comment> </FREEALGEBRA>
Alternating group 4
<FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> <vars>a1,a2,a3,a4</vars> <basis> <ncpoly>a1^3-1</ncpoly> <ncpoly>a2^3-1</ncpoly> <ncpoly>a3^3-1</ncpoly> <ncpoly>a4^3-1</ncpoly> <ncpoly>a1*a2*a1*a2-1</ncpoly> <ncpoly>a1*a3*a1*a3-1</ncpoly> <ncpoly>a1*a4*a1*a4-1</ncpoly> <ncpoly>a2*a1*a2*a1-1</ncpoly> <ncpoly>a2*a3*a2*a3-1</ncpoly> <ncpoly>a2*a4*a2*a4-1</ncpoly> <ncpoly>a3*a1*a3*a1-1</ncpoly> <ncpoly>a3*a2*a3*a2-1</ncpoly> <ncpoly>a3*a4*a3*a4-1</ncpoly> <ncpoly>a4*a1*a4*a1-1</ncpoly> <ncpoly>a4*a2*a4*a2-1</ncpoly> <ncpoly>a4*a3*a4*a3-1</ncpoly> </basis> <Comment>Alternating_group_4</Comment> </FREEALGEBRA>
Alternating group 5
<FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> <vars>a1,a2,a3,a4,a5</vars> <basis> <ncpoly>a1^3-1</ncpoly> <ncpoly>a2^3-1</ncpoly> <ncpoly>a3^3-1</ncpoly> <ncpoly>a4^3-1</ncpoly> <ncpoly>a5^3-1</ncpoly> <ncpoly>a1*a2*a1*a2-1</ncpoly> <ncpoly>a1*a3*a1*a3-1</ncpoly> <ncpoly>a1*a4*a1*a4-1</ncpoly> <ncpoly>a1*a5*a1*a5-1</ncpoly> <ncpoly>a2*a1*a2*a1-1</ncpoly> <ncpoly>a2*a3*a2*a3-1</ncpoly> <ncpoly>a2*a4*a2*a4-1</ncpoly> <ncpoly>a2*a5*a2*a5-1</ncpoly> <ncpoly>a3*a1*a3*a1-1</ncpoly> <ncpoly>a3*a2*a3*a2-1</ncpoly> <ncpoly>a3*a4*a3*a4-1</ncpoly> <ncpoly>a3*a5*a3*a5-1</ncpoly> <ncpoly>a4*a1*a4*a1-1</ncpoly> <ncpoly>a4*a2*a4*a2-1</ncpoly> <ncpoly>a4*a3*a4*a3-1</ncpoly> <ncpoly>a4*a5*a4*a5-1</ncpoly> <ncpoly>a5*a1*a5*a1-1</ncpoly> <ncpoly>a5*a2*a5*a2-1</ncpoly> <ncpoly>a5*a3*a5*a3-1</ncpoly> <ncpoly>a5*a4*a5*a4-1</ncpoly> </basis> <Comment>Alternating_group_5</Comment> </FREEALGEBRA>
Alternating group 6
<FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> <vars>a1,a2,a3,a4,a5,a6</vars> <uptoDeg>100</uptoDeg> <basis> <ncpoly>a1^3-1</ncpoly> <ncpoly>a2^3-1</ncpoly> <ncpoly>a3^3-1</ncpoly> <ncpoly>a4^3-1</ncpoly> <ncpoly>a5^3-1</ncpoly> <ncpoly>a6^3-1</ncpoly> <ncpoly>a1*a2*a1*a2-1</ncpoly> <ncpoly>a1*a3*a1*a3-1</ncpoly> <ncpoly>a1*a4*a1*a4-1</ncpoly> <ncpoly>a1*a5*a1*a5-1</ncpoly> <ncpoly>a1*a6*a1*a6-1</ncpoly> <ncpoly>a2*a1*a2*a1-1</ncpoly> <ncpoly>a2*a3*a2*a3-1</ncpoly> <ncpoly>a2*a4*a2*a4-1</ncpoly> <ncpoly>a2*a5*a2*a5-1</ncpoly> <ncpoly>a2*a6*a2*a6-1</ncpoly> <ncpoly>a3*a1*a3*a1-1</ncpoly> <ncpoly>a3*a2*a3*a2-1</ncpoly> <ncpoly>a3*a4*a3*a4-1</ncpoly> <ncpoly>a3*a5*a3*a5-1</ncpoly> <ncpoly>a3*a6*a3*a6-1</ncpoly> <ncpoly>a4*a1*a4*a1-1</ncpoly> <ncpoly>a4*a2*a4*a2-1</ncpoly> <ncpoly>a4*a3*a4*a3-1</ncpoly> <ncpoly>a4*a5*a4*a5-1</ncpoly> <ncpoly>a4*a6*a4*a6-1</ncpoly> <ncpoly>a5*a1*a5*a1-1</ncpoly> <ncpoly>a5*a2*a5*a2-1</ncpoly> <ncpoly>a5*a3*a5*a3-1</ncpoly> <ncpoly>a5*a4*a5*a4-1</ncpoly> <ncpoly>a5*a6*a5*a6-1</ncpoly> <ncpoly>a6*a1*a6*a1-1</ncpoly> <ncpoly>a6*a2*a6*a2-1</ncpoly> <ncpoly>a6*a3*a6*a3-1</ncpoly> <ncpoly>a6*a4*a6*a4-1</ncpoly> <ncpoly>a6*a5*a6*a5-1</ncpoly> </basis> <Comment>Alternating_group_6</Comment> </FREEALGEBRA>