ApCoCoA-1:Oktaeder group

From ApCoCoAWiki
Revision as of 06:57, 10 September 2013 by F lorenz (talk | contribs) (New page: === <div id="Oktaeder group">Oktaeder group</div> === ==== Description ==== The Oktaeder group is a subgroup of the symmetric group. Like the Tetr...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Description

The Oktaeder group is a subgroup of the symmetric group. Like the Tetraeder group this group is generated only by rotations.

 O = <a,b | a^2 = b^3 = (ab)^4 = 1>

Reference

Geometries and Transformations, Manuscript, Chapter 11: Finite symmetry groups, N.W. Johnson, 2011

Computation

 /*Use the ApCoCoA package ncpoly.*/
 
 Use ZZ/(2)[a,b];
 NC.SetOrdering("LLEX");

 Define CreateRelationsOktaeder()
   Relations:=[];
   // add the relation a^2 = 1 
   Append(Relations,[[a^2],[1]]);
   
   // add the relation b^3 = 1
   Append(Relations,[[b^3],[1]]);
   
   // add the relation (ab)^4 = 1
   Append(Relations,[[a,b,a,b,a,b,a,b],[1]]);
   
    Return Relations;
 EndDefine;
 
 Relations:=CreateRelationsOktaeder();
 Gb:=NC.GB(Relations);