ApCoCoA-1:Cyclic groups
From ApCoCoAWiki
Revision as of 14:40, 6 March 2014 by StrohmeierB (talk | contribs) (→Examples in Symbolic Data format)
Description
Every cyclic group is generated by a single element a. If n is finite the group is isomorphic to Z/nZ, otherwise it can be interpreted as Z with the addition of integers as the group operation. For every cyclic group there only exists one subgroup containing a, the group itself.
C(n) = <a | a^{n} = 1>
Reference
Joseph A. Gallian, Contemporary Abstract Algebra (4th ed.), Boston: Houghton Mifflin, Chapter 4, 1998.
Computation
/*Use the ApCoCoA package ncpoly.*/ // Number of cyclic group MEMORY.N:=5; Use ZZ/(2)[a]; NC.SetOrdering("LLEX"); Define CreateRelationsCyclic() Relations:=[]; // Add relation a^n = 1 Append(Relations,[[a^MEMORY.N],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsCyclic(); Relations; // Compute a Groebner Basis. Gb:=NC.GB(Relations); Gb; // RESULT for MEMORY.N = 5 :: [[[a^5], [1]]]
Examples in Symbolic Data Format
Cyclic group 5
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^5-1</ncpoly> </basis> <Comment>Cyclic_group_5</Comment> </FREEALGEBRA>
Cyclic group 6
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^6-1</ncpoly> </basis> <Comment>Cyclic_group_6</Comment> </FREEALGEBRA>
Cyclic group 7
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^7-1</ncpoly> </basis> <Comment>Cyclic_group_7</Comment> </FREEALGEBRA>
Cyclic group 8
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^8-1</ncpoly> </basis> <Comment>Cyclic_group_8</Comment> </FREEALGEBRA>
Cyclic group 9
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^9-1</ncpoly> </basis> <Comment>Cyclic_group_9</Comment> </FREEALGEBRA>
Cyclic group 10
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(10)-1</ncpoly> </basis> <Comment>Cyclic_group_10</Comment> </FREEALGEBRA>
Cyclic group 11
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(11)-1</ncpoly> </basis> <Comment>Cyclic_group_11</Comment> </FREEALGEBRA>
Cyclic group 12
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(12)-1</ncpoly> </basis> <Comment>Cyclic_group_12</Comment> </FREEALGEBRA>
Cyclic group 13
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(13)-1</ncpoly> </basis> <Comment>Cyclic_group_13</Comment> </FREEALGEBRA>
Cyclic group 14
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(14)-1</ncpoly> </basis> <Comment>Cyclic_group_14</Comment> </FREEALGEBRA>
Cyclic group 15
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(15)-1</ncpoly> </basis> <Comment>Cyclic_group_15</Comment> </FREEALGEBRA>
Cyclic group 16
<FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(16)-1</ncpoly> </basis> <Comment>Cyclic_group_16</Comment> </FREEALGEBRA>
Cyclic group 17
<FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(17)-1</ncpoly> </basis> <Comment>Cyclic_group_17</Comment> </FREEALGEBRA>
Cyclic group 18
<FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(18)-1</ncpoly> </basis> <Comment>Cyclic_group_18</Comment> </FREEALGEBRA>
Cyclic group 19
<FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(19)-1</ncpoly> </basis> <Comment>Cyclic_group_19</Comment> </FREEALGEBRA>
Cyclic group 20
<FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(20)-1</ncpoly> </basis> <Comment>Cyclic_group_20</Comment> </FREEALGEBRA>
Cyclic group 21
<FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(21)-1</ncpoly> </basis> <Comment>Cyclic_group_21</Comment> </FREEALGEBRA>
Cyclic group 22
<FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(22)-1</ncpoly> </basis> <Comment>Cyclic_group_22</Comment> </FREEALGEBRA>
Cyclic group 23
<FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier"> <vars>a</vars> <basis> <ncpoly>a^(23)-1</ncpoly> </basis> <Comment>Cyclic_group_23</Comment> </FREEALGEBRA>