ApCoCoA-1:NC.FindPolys
NC.FindPolys
Find polynomials with specified indeterminates from a LIST of polynomials.
Syntax
NC.FindPolys(Polys:LIST, Inds:LIST):LIST
Description
Please set non-commutative polynomial ring (via the command Use) before calling this function. For more information, please check the relevant commands and functions.
@param Polys: a LIST of non-commutative polynomials. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].
@param Inds: a LIST of specified indeterminates.
@return: a LIST of non-commutative polynomials, which are in Inds.
Example
Polynomials:=[[[1,<quotes>a</quotes>], [1,<quotes>b</quotes>], [1,<quotes>c</quotes>]], [[1,<quotes>b</quotes>]]]; NC.FindPolynomials(<quotes>abc</quotes>, Polynomials); [[[1, <quotes>a</quotes>], [1, <quotes>b</quotes>], [1, <quotes>c</quotes>]], [[1, <quotes>b</quotes>]]] ------------------------------- NC.FindPolynomials(<quotes>a</quotes>, Polynomials); [ ] ------------------------------- NC.FindPolynomials(<quotes>b</quotes>, Polynomials); [[[1, <quotes>b</quotes>]]] ------------------------------- NC.FindPolynomials(<quotes>ab</quotes>, Polynomials); [[[1, <quotes>b</quotes>]]] ------------------------------- NC.SetX(<quotes>txyz</quotes>); NC.SetOrdering(<quotes>ELIM</quotes>); -- ELIM will eliminate t, x, y, z one after another F1 := [[1,<quotes>xx</quotes>], [-1,<quotes>yx</quotes>]]; F2 := [[1,<quotes>xy</quotes>], [-1,<quotes>ty</quotes>]]; F3 := [[1,<quotes>xt</quotes>], [-1, <quotes>tx</quotes>]]; F4 := [[1,<quotes>yt</quotes>], [-1, <quotes>ty</quotes>]]; G := [F1, F2,F3,F4]; Gb := NC.GB(G); -- compute Groebner basis of <G> w.r.t. ELIM Gb; NC.FindPolynomials(<quotes>xyz</quotes>,Gb); -- compute Groebner basis of the intersection of <G> and K<x,y,z> w.r.t. ELIM [[[1, <quotes>xx</quotes>], [2, <quotes>yx</quotes>]], [[1, <quotes>ty</quotes>], [2, <quotes>xy</quotes>]], [[1, <quotes>yt</quotes>], [2, <quotes>xy</quotes>]], [[1, <quotes>tx</quotes>], [2, <quotes>xt</quotes>]], [[1, <quotes>xyx</quotes>], [2, <quotes>yyx</quotes>]], [[1, <quotes>xyy</quotes>], [2, <quotes>yxy</quotes>]], [[1, <quotes>yxt</quotes>], [2, <quotes>yyx</quotes>]]] ------------------------------- [[[1, <quotes>xx</quotes>], [2, <quotes>yx</quotes>]], [[1, <quotes>xyx</quotes>], [2, <quotes>yyx</quotes>]], [[1, <quotes>xyy</quotes>], [2, <quotes>yxy</quotes>]]] -------------------------------
See also