ApCoCoA-1:BBSGen.JacobiLin
BBSGen.TraceSyzStep
- This function computes the K[c]-linear polynomial entries of the Jacobi identity [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1...n}.
Syntax
BBSGen.JacobiLin(OO,BO,N); BBSGen.JacobiLin(OO:LIST,BO:LIST,N:INTEGER):MATRIX
Description
Let R=K[x_1,...,x_n] and A_k be the generic multiplication matrix associated to x_k. Let Tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l \in {1,..,n}.
Let m,k,l \in {1,...,n}. This function computes the polynomial entries of the Jacobi identity J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] that has constant coeffiecients. During the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j]\in XX. Therefore the result of BBSGen.JacobiLin is a list of polynomials from the ring K[t[1..N,1..N,1..Mu,1..Mu]].
Please note that this function does not work for the case, where n=2.
@param Order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <commandref>BB.Border</commandref> in package borderbasis)
@return The K[c]-linear entries of the Jacobi Identity J^{ikl}. .
Example
Use R::=QQ[x[1..3]]; OO:=[1,x[1]]; BO:=BB.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.JacobiLin(OO,BO,N); [[ [ -t[2,3,1,2],0], [ t[2,3,1,1] - t[2,3,2,2], t[2,3,1,2]]]]