ApCoCoA-1:GLPK.L01PSolve
From ApCoCoAWiki
GLPK.L01PSolve
Solve a system of polynomial equations over F_2 for one solution in F_2^n.
Syntax
GLPK.L01PSolve(F:LIST, CuttingNumber:INT, QStrategy:INT, CStrategy:INT, MinMax:STRING)
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
@param F: A List containing the polynomials of the given system.
@param CuttingNumber: Maximal support-length of the linear polynomials for conversion to CNF. The possible value could be from 3 to 6.
@param QStrategy: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; and 2 - Double Linear Partner;
@param CStrategy: Strategy for cubic substitution. 0 - Standard; and 1 - Quadratic Partner;
@param MinMax: Optimization direction i.e. minimization ("Min") or maximization ("Max").
Example
-- We want to maximize the Function y = - 1/2x, -- with the two conditions y ≤ 6 - 3/4x and y ≥ 1 - x and the bounds 0 ≤ x ≤ 6 and 1/3 ≤ y ≤ 4. -- We prename the input of GLPK.MIPSolve-function. Use S::=QQ[x,y]; OF := 1/2x + y; LE := [3/4x + y - 6]; GE := [x + y - 1]; Bounds:=[[0,6], [1/3,4]]; IntNum:=[x,y]; -- Then we compute the solution with GLPK.MIPSolve(OF, [], LE, GE, Bounds, IntNum, [], <quotes>Max</quotes>); -- And we achieve: Solution Status: INTEGER OPTIMAL Value of objective function: 5 [x - 2, y - 4]