ApCoCoA-1:Bertini.BZCSolve
Bertini.BZCSolve
Solves a zero dimensional homogeneous or non-homogeneous polynomial system of equations using configurations provided by the user.
Syntax
Bertini.BZCSolve(P:LIST, SysTyp:STRING , ConfigSet:LIST):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
@param P: List of polynomials of the given system.
@param SysTyp: Type of polynomials in the List P. Homogeneous ("hom") or non-homogeneous ("Nhom").
@param ConfigSet: List of strings representing configurations to be used. Bertini uses multiple configuration settings. These configurations should be provided by the user. If you want to use default configurations then leave this list empty. For details about configuration settings see Bertini manual http://www.nd.edu/~sommese/bertini/BertiniUsersManual.pdf
@return A list of lists containing the finite (or real) solutions of the polynomial system P.
.
Example
-- An example of zero dimensional Non-homogenous solving with fixed higher precision. -- We want to solve the zero dimensional non-homogenous system x^2+y^2-5=0, xy-2=0, for fixed higher precision. Use S ::= QQ[x,y]; P := [x^2+y^2-5,xy-2]; SysTyp := <quotes>Nhom</quotes>; ConfigSet := [<quotes>MPTYPE: 1</quotes>, <quotes>PRECISION: 128</quotes>]; -- Then we compute the solution with Bertini.BZCSolve(P,SysTyp,ConfigSet); -- And we achieve a list of lists containing all finite solutions. ---------------------------------------- [[Vector(500000000000000870080079571456753631209/500000000000000000000000000000000000000, 41243336046164965623860294533917 3594181/200000000000000000000000000000000000000000000000000000), Vector(199999999999999920289038441185562687901/100000000000000000000000000000000000000, -4918613303067726249865351347506841944303/5000000000000000000000000000000000000000000000000000000)], [Vector(999999999999996907691691548150283767063/500000000000000000000000000000000000000, 4026821783991733021565024336088959292491/1000000000000000000000000000000000000000000000000000000), Vector(1000000000000008119524837615406734621127/1000000000000000000000000000000000000000, -9202828375000265851232972557923998357683/1000000000000000000000000000000000000000000000000000000)], [Vector(-1999999999999981470621955122058645854307/1000000000000000000000000000000000000000, -2219296880596437220953595963738223862847/100000000000000000000000000000000000000000000000000000), Vector(-1000000000000016429280952166817619195409/1000000000000000000000000000000000000000, 2246895233251384601549113345810086172711/100000000000000000000000000000000000000000000000000000)], [Vector(-9999999999999986714415752390569533003343/10000000000000000000000000000000000000000, 2376331150450927561422763997224327498341/1000000000000000000000000000000000000000000000000000000), Vector(-200000000000000126515279556718539177417/100000000000000000000000000000000000000, -409661331378413177493500945204322606473/250000000000000000000000000000000000000000000000000000)]] --The elements of lists are vectors. Each vector represents a complex number. For example Vector(5000/1000,-4150/1000) --represents the complex number 5000/1000-4150/1000i --For other Bertini output files please refer to ApCoCoA directory/Bertini.
Example
-- An example of zero dimensional homogenous solving with fixed higher precision -- We want to solve the zero dimensional homogenous system x^2-z^2=0, xy-z^2=0, for fixed higher precision. Use S ::= QQ[x,y]; P := [x^2-z^2, xy-z^2]; SysTyp := <quotes>hom</quotes>; ConfigSet := [<quotes>MPTYPE: 1</quotes>, <quotes>PRECISION: 128</quotes>]; -- Then we compute the solution with Bertini.BZCSolve(P,SysTyp,ConfigSet); -- And we achieve a list of lists containing all real solutions. ---------------------------------------- [[-1121226775607053112950715616047234987919/100000000000000000000000000000000000000000, -1121226775607053112950715616047234987919/100000000000000000000000000000000000000000, -1121226775607053112950715616047234987919/100000000000000000000000000000000000000000], [-666269356331265789905402745641735631587/1250000000000000000000000000000000000000, -666269356331265789905402745641735631587/1250000000000000000000000000000000000000, 666269356331265789905402745641735631587/1250000000000000000000000000000000000000], [-1961395985465574251430275441821775811231/20000000000000000000000000000000000000000000000000000, 1604689603443950100804972123829819895459/2500000000000000000000000000000000000000, -9839275092234527567507618459170114455473/100000000000000000000000000000000000000000000000000000], [-1197970328164235882805480928545099670003/10000000000000000000000000000000000000000000000000000, 3209379206887735502321156763919697536571/5000000000000000000000000000000000000000, -4210800092649494941547012623104854361/31250000000000000000000000000000000000000000000000]] --For other Bertini output files please refer to ApCoCoA directory/Bertini.
See also