ApCoCoA-1:CharP.GBasisF512

From ApCoCoAWiki
Revision as of 14:01, 14 November 2008 by Skaspar (talk | contribs) (Added ApCoCoAServer note)

Char2.GBasisF512

computing a gbasis of a given ideal in <formula>\mathbb{F}_{512}</formula>

Syntax

$char2.GBasisF512(Ideal):List

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use

it/them.

This command computes a Groebner basis in the field <formula> \mathbb{F}_{512} = (\mathbb{Z}_{\setminus(2)} [x])_{\setminus(x^9 + x +1)}</formula>. It uses the ApCoCoA Server and the ApCoCoALib's class RingF512.

The command's input is a an Ideal in a Ring over Z, where the elements 0,..., 511 represent the field's elements. Details on this representation can be found here. For short, the binary representation of the number represents the coefficient vector if the polynomial in the field, e.g.

<formula> 11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0</formula>

So the number <formula>11</formula> corresponds to the polynomial <formula>x^3 + x + 1</formula>.


See also

GBasis

char2.GBasisF2

char2.GBasisF4

char2.GBasisF8

char2.GBasisF16

char2.GBasisF32

char2.GBasisF64

char2.GBasisF128

char2.GBasisF256

char2.GBasisF1024

char2.GBasisF2048

char2.GBasisF4096

char2.GBasisModSquares