ApCoCoA-1:Braid groups

From ApCoCoAWiki
Revision as of 07:11, 23 August 2013 by Xiu (talk | contribs) (→‎Computation)

Description

The Braid groups are infinite for a natural number n > 1 and have the following presentation.

B(n) = <g_{1},...,g_{n-1} | g_{i}g_{j} = g_{j}g_{i} for |i-j| >= 2, g_{i}g_{i+1}g_{i} = g_{i+1}g_{i}g_{i+1} for 1 <= i <= n-2>

The complexity in the group B(n) grows with n. We get the trivial group for n = 1 and the infinite cyclic group for n >= 2.

(Reference: E. Artin, "Theory of braids" Ann. of Math. , 48 (1947) pp. 643–649 and

W. Magnus, Braid groups: A survey, Proceedings of the Second International Conference on the Theory of Groups, Canberra, Australia, 1973, pp. 463-487.)

Computation

We enumerate partial Groebner bases for the Braid groups as follows.

/*Use the ApCoCoA package ncpoly.*/
 
 // The number of Braid group
 MEMORY.N:=3;
 
 Use ZZ/(2)[a[1..MEMORY.N],b[1..MEMORY.N]];
 NC.SetOrdering("LLEX");
 
 Define CreateRelationsBraid()
   Relations:=[];
   For Index1:= 1 To MEMORY.N Do
     Append(Relations,[[a[Index1],b[Index1]],[1]]);
     Append(Relations,[[b[Index1],a[Index1]],[1]]);  	
   EndFor;
 
   For Index2:=1 To MEMORY.N Do
     For Index3:=(Index2+2) To MEMORY.N Do
       If Abs(Index2-Index3)>1 Then		
         // Insert the relation a_{i}a_{i+2} = a_{i+2}a_{i}
         Append(Relations,[[a[Index2],a[Index3]],[a[Index3],a[Index2]]]);
       EndIf;
     EndFor;
   EndFor;
 
   For Index4:=1 To MEMORY.N Do
     For Index5:=(Index4+1) To MEMORY.N Do
       If Abs(Index4-Index5)=1 Then			
         // Insert the relation a_{i}a_{i+1}a_{i} = a_{i+1}a_{i}a_{i+1}
         Append(Relations,[[a[Index4],a[Index5],a[Index4]],[a[Index5],a[Index4],a[Index5]]]);
       EndIf
     EndFor;
   EndFor;
 
   Return Relations;
 EndDefine;
 
 Relations:=CreateRelationsBraid();
 
 -- Enumerate a partial Groebner basis (see NC.GB for more details)
 NC.GB(G,31,1,100,1000);