Difference between revisions of "ApCoCoA-1:BB.GenMultMat"
From ApCoCoAWiki
(Added example.) |
|||
Line 13: | Line 13: | ||
<item>@return The generic multiplication matrix.</item> | <item>@return The generic multiplication matrix.</item> | ||
</itemize> | </itemize> | ||
+ | <example> | ||
+ | Use QQ[x, y, z], DegRevLex; | ||
+ | BB.GenMultMat(1, [1, x, y, z]); | ||
+ | |||
+ | ------------------------------- | ||
+ | Mat([ | ||
+ | [0, BBS :: c[1,6], BBS :: c[1,5], BBS :: c[1,3]], | ||
+ | [1, BBS :: c[2,6], BBS :: c[2,5], BBS :: c[2,3]], | ||
+ | [0, BBS :: c[3,6], BBS :: c[3,5], BBS :: c[3,3]], | ||
+ | [0, BBS :: c[4,6], BBS :: c[4,5], BBS :: c[4,3]] | ||
+ | ]) | ||
+ | ------------------------------- | ||
+ | </example> | ||
</description> | </description> | ||
<types> | <types> |
Revision as of 13:37, 9 July 2009
BB.GenMultMat
Computes a generic multiplication matrix.
Syntax
BB.GenMultMat(I:INT,OO:LIST):MAT
Description
Computes the generic multiplication matrix for the I-th indeterminate with respect to an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size Len(OO) x Len(OO) over the ring BBS=K[c_{ij}].
@param I An integer which specifies the indeterminate for which the generic multiplication matrix will be computed.
@param OO A list of terms representing an order ideal.
@return The generic multiplication matrix.
Example
Use QQ[x, y, z], DegRevLex; BB.GenMultMat(1, [1, x, y, z]); ------------------------------- Mat([ [0, BBS :: c[1,6], BBS :: c[1,5], BBS :: c[1,3]], [1, BBS :: c[2,6], BBS :: c[2,5], BBS :: c[2,3]], [0, BBS :: c[3,6], BBS :: c[3,5], BBS :: c[3,3]], [0, BBS :: c[4,6], BBS :: c[4,5], BBS :: c[4,3]] ]) -------------------------------