Difference between revisions of "ApCoCoA-1:BB.GenHomMultMat"
From ApCoCoAWiki
(Added example.) |
|||
Line 13: | Line 13: | ||
<item>@return The generic homogeneous multiplication matrix.</item> | <item>@return The generic homogeneous multiplication matrix.</item> | ||
</itemize> | </itemize> | ||
+ | <example> | ||
+ | Use QQ[x, y, z], DegRevLex; | ||
+ | BB.GenHomMultMat(1, [1, x, x^2, y, z]); | ||
+ | |||
+ | ------------------------------- | ||
+ | Mat([ | ||
+ | [0, 0, 0, 0, 0], | ||
+ | [1, 0, 0, 0, 0], | ||
+ | [0, 1, 0, BBS :: c[3,5], BBS :: c[3,3]], | ||
+ | [0, 0, 0, 0, 0], | ||
+ | [0, 0, 0, 0, 0] | ||
+ | ]) | ||
+ | ------------------------------- | ||
+ | </example> | ||
</description> | </description> | ||
<types> | <types> |
Revision as of 13:31, 9 July 2009
BB.GenHomMultMat
Computes a generic homogeneous multiplication matrix.
Syntax
BB.GenHomMultMat(I:INT,OO:LIST):MAT
Description
Computes the generic homogeneous multiplication matrix for x[I] with respect to an order ideal. The inputs are an integer I and a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is a matrix of size Len(OO) x Len(OO) over the ring BBS=K[c_{ij}].
@param I An integer which specifies the indeterminate for which the generic homogeneous multiplication matrix will be computed.
@param OO A list of terms representing an order ideal.
@return The generic homogeneous multiplication matrix.
Example
Use QQ[x, y, z], DegRevLex; BB.GenHomMultMat(1, [1, x, x^2, y, z]); ------------------------------- Mat([ [0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 1, 0, BBS :: c[3,5], BBS :: c[3,3]], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0] ]) -------------------------------