Difference between revisions of "ApCoCoA-1:Gbmr.PRGB"

From ApCoCoAWiki
(Removing all content from page)
Line 1: Line 1:
 
+
<command>
 +
<title>Gbmr.PRGB</title>
 +
<short_description>
 +
Compute reduced Groebner basis of right ideal.
 +
</short_description>
 +
<syntax>
 +
Gbmr.PRGB(Alphabet:STRING, Rules:LIST, Order:STRING, F:LIST):LIST
 +
</syntax>
 +
<description>
 +
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 +
<itemize>
 +
<item>@param <em>Alphabet</em>: Alphabet of the rewriting system.</item>
 +
<item>@param <em>Rules</em>: Rewriting rules of the rewriting system.</item>
 +
<item>@param <em>Order</em>: Ordering of monoids.</item>
 +
<item>@param <em>F</em>: List of generators.</item>
 +
<item>@return A list of polynomials which forms a reduced Groebner basis of right ideal generated by F.</item>
 +
</itemize>
 +
<example>
 +
Alphabet := "abc";
 +
Rules := [["aa",""], ["bb",""], ["ab","c"], ["ac", "b"], ["cb", "a"]];
 +
Order := "LLEX";
 +
F1 := [[1,"a"], [1,"b"], [1,"c"]];
 +
F := [F1];
 +
Gbmr.PRGB(Alphabet, Rules, Order, F);
 +
-------------------------------
 +
[1+-1b,
 +
1+1c+1a,
 +
1c+1b+1c,
 +
1c+1b+1cc,
 +
1+1a+1ca,
 +
1b+1cc+1bc,
 +
1+1ca+1ba]
 +
</example>
 +
</description>
 +
<seealso>
 +
<see>Introduction to CoCoAServer</see>
 +
</seealso>
 +
<types>
 +
<type>apcocoaserver</type>
 +
<type>groebner</type>
 +
<key>gbmr.PRGB</key>
 +
<key>PRGB</key>
 +
<wiki-category>Package_gbmr</wiki-category>
 +
</command>

Revision as of 09:43, 9 July 2009

Gbmr.PRGB

Compute reduced Groebner basis of right ideal.

Syntax

Gbmr.PRGB(Alphabet:STRING, Rules:LIST, Order:STRING, F:LIST):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

  • @param Alphabet: Alphabet of the rewriting system.

  • @param Rules: Rewriting rules of the rewriting system.

  • @param Order: Ordering of monoids.

  • @param F: List of generators.

  • @return A list of polynomials which forms a reduced Groebner basis of right ideal generated by F.

Example

Alphabet := "abc";
Rules := [["aa",""], ["bb",""], ["ab","c"], ["ac", "b"], ["cb", "a"]];
Order := "LLEX";
F1 := [[1,"a"], [1,"b"], [1,"c"]];
F := [F1]; 
Gbmr.PRGB(Alphabet, Rules, Order, F);
-------------------------------
[1+-1b,
1+1c+1a,
1c+1b+1c,
1c+1b+1cc,
1+1a+1ca,
1b+1cc+1bc,
1+1ca+1ba]

See also

Introduction to CoCoAServer

<types> <type>apcocoaserver</type> <type>groebner</type>