Difference between revisions of "ApCoCoA-1:DA.Sep"

From ApCoCoAWiki
Line 6: Line 6:
 
</syntax>
 
</syntax>
 
<description>
 
<description>
DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectively. The seperand of F is just the initial of the derivative of F.
+
<ref>DA.Sep</ref> returns the separand of polynomial <tt>F</tt> wrt. the current differential term ordering, or the hereby induced ranking, respectively. The seperand of <tt>F</tt> is just the initial of the derivative of <tt>F</tt>.
  
 
<itemize>
 
<itemize>
 
<item>@param <em>F</em> A differential polynomial.</item>
 
<item>@param <em>F</em> A differential polynomial.</item>
<item>@return The seperand of F wrt. to the current differential term ordering.</item>
+
<item>@return The seperand of <tt>F</tt> wrt. to the current differential term ordering.</item>
 
</itemize>
 
</itemize>
  

Revision as of 13:23, 7 July 2009

DA.Sep

Computes the separand of a differential polynomial.

Syntax

DA.Sep(F:POLY):POLY

Description

DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectively. The seperand of F is just the initial of the derivative of F.

  • @param F A differential polynomial.

  • @return The seperand of F wrt. to the current differential term ordering.

Example

Use QQ[x[1..2,0..20]];
Use QQ[x[1..2,0..20]], Ord(DA.DiffTO(<quotes>Lex</quotes>));

F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2];
G:=DA.Differentiate(F);
DA.Initial(G);
-------------------------------
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
-------------------------------
DA.Sep(F);
-------------------------------
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
-------------------------------


DA.DiffTO

DA.Differentiate

DA.Initial