Difference between revisions of "ApCoCoA-1:DA.Sep"
From ApCoCoAWiki
Line 15: | Line 15: | ||
<example> | <example> | ||
Use Q[x[1..2,0..20]]; | Use Q[x[1..2,0..20]]; | ||
− | Use Q[x[1..2,0..20]], Ord(DA.DiffTO( | + | Use Q[x[1..2,0..20]], Ord(DA.DiffTO(<quotes>Lex</quotes>)); |
F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2]; | F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2]; |
Revision as of 13:28, 27 April 2009
DA.Sep
Computes the separand of a differential polynomial.
Syntax
DA.Sep(F:POLY):POLY
Description
DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectivly. The seperand of F is just the initial of the derivative of F.
@param F A differential polynomial.
@return The seperand of F wrt. to the current differential term ordering.
Example
Use Q[x[1..2,0..20]]; Use Q[x[1..2,0..20]], Ord(DA.DiffTO(<quotes>Lex</quotes>)); F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2]; G:=DA.Differentiate(F); DA.Initial(G); ------------------------------- 2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2] ------------------------------- DA.Sep(F); ------------------------------- 2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2] -------------------------------