Difference between revisions of "ApCoCoA-1:DA.LD"

From ApCoCoAWiki
Line 6: Line 6:
 
</syntax>
 
</syntax>
 
<description>
 
<description>
DA.LD computes the leading derivative of polynomial F wrt. the current differential term ordering, or the hereby induced ranking respectivly.
+
DA.LD computes the leading derivative of polynomial F wrt. the current differential term ordering, or the hereby induced ranking respectively.
 
<itemize>
 
<itemize>
 
<item>@param <em>F</em> A differential polynomial.</item>
 
<item>@param <em>F</em> A differential polynomial.</item>
Line 13: Line 13:
 
<example>
 
<example>
 
Use Q[x[1..2,0..20]];
 
Use Q[x[1..2,0..20]];
Use Q[x[1..2,0..20]], Ord(DA.DiffTO("DegOrd"));
+
Use Q[x[1..2,0..20]], Ord(DA.DiffTO(<quotes>DegOrd</quotes>));
 
F:=x[1,2]^2*x[1,1]-x[2,4]^3;
 
F:=x[1,2]^2*x[1,1]-x[2,4]^3;
 
DA.LD(F);
 
DA.LD(F);

Revision as of 13:17, 27 April 2009

DA.LD

Computes the leading derivative of a differential polynomial.

Syntax

DA.LD(F:POLY):POLY

Description

DA.LD computes the leading derivative of polynomial F wrt. the current differential term ordering, or the hereby induced ranking respectively.

  • @param F A differential polynomial.

  • @return The leading derivative of F.

Example

Use Q[x[1..2,0..20]];
Use Q[x[1..2,0..20]], Ord(DA.DiffTO(<quotes>DegOrd</quotes>));
F:=x[1,2]^2*x[1,1]-x[2,4]^3;
DA.LD(F);
-------------------------------
x[2,4]
-------------------------------

DA.DiffTO