Difference between revisions of "ApCoCoA-1:DA.DiffTO"

From ApCoCoAWiki
Line 15: Line 15:
 
-- Assume that the current ring is given by Q[x[1..n,0..m]].  
 
-- Assume that the current ring is given by Q[x[1..n,0..m]].  
 
-- Then D can be one of the following values:
 
-- Then D can be one of the following values:
-- "Lex":    Lexicographic ordering with 1<x[1,0]<x[1,1]<x[1,2]<...<x[2,0]<x[2,1]<...  
+
-- <quotes>Lex</quotes>:    Lexicographic ordering with 1&lt;x[1,0]&lt;x[1,1]&lt;x[1,2]&lt;...&lt;x[2,0]&lt;x[2,1]&lt;...  
-- "DegLex":  S > T iff Deg(S) > Deg(T) or Deg(S) = Deg(T) and S >_Lex T
+
-- <quotes>DegLex</quotes>:  S > T iff Deg(S) > Deg(T) or Deg(S) = Deg(T) and S >_Lex T
-- "WLex":    S > T iff Weight(S) > Weight(T) or Weight(S) = Weight(T) and S >_Lex T
+
-- <quotes>WLex</quotes>:    S > T iff Weight(S) > Weight(T) or Weight(S) = Weight(T) and S >_Lex T
-- "Ord":    Lexicographic ordering with 1&lt;x[1,0]&lt;x[2,0]&lt;...&lt;x[1,1]&lt;x[2,1]&lt;...
+
-- <quotes>Ord</quotes>:    Lexicographic ordering with 1&lt;x[1,0]&lt;x[2,0]&lt;...&lt;x[1,1]&lt;x[2,1]&lt;...
-- "DegOrd":  S > T iff Deg(S) > Deg(T) or Deg(S) = Deg(T) and S >_Ord T
+
-- <quotes>DegOrd</quotes>:  S > T iff Deg(S) > Deg(T) or Deg(S) = Deg(T) and S >_Ord T
-- "WOrd":    S > T iff Weight(S) > Weight(T) or Weight(S) = Weight(T) and S >_Ord T
+
-- <quotes>WOrd</quotes>:    S > T iff Weight(S) > Weight(T) or Weight(S) = Weight(T) and S >_Ord T
 
--
 
--
 
-- Use as follows:
 
-- Use as follows:
 
Use Q[x[1..1,0..20]];
 
Use Q[x[1..1,0..20]];
Use Q[x[1..1,0..20]], Ord(DiffTO("Lex"));
+
Use Q[x[1..1,0..20]], Ord(DiffTO(<quotes>Lex</quotes>));
 
</example>
 
</example>
 
</description>
 
</description>

Revision as of 13:14, 27 April 2009

DA.DiffTO

Matrix corresponding to predefined differential term orderings.

Syntax

DA.DiffTO(D:STRING):MATRIX

Description

This function returns the matrix corresponding to the indicated term ordering D.

  • @param D Name of a predefined differential term ordering.

  • @return The matrix corresponding to the predefined term ordering.

Example

-- Assume that the current ring is given by Q[x[1..n,0..m]]. 
-- Then D can be one of the following values:
-- <quotes>Lex</quotes>:     Lexicographic ordering with 1&lt;x[1,0]&lt;x[1,1]&lt;x[1,2]&lt;...&lt;x[2,0]&lt;x[2,1]&lt;... 
-- <quotes>DegLex</quotes>:  S > T iff Deg(S) > Deg(T) or Deg(S) = Deg(T) and S >_Lex T
-- <quotes>WLex</quotes>:    S > T iff Weight(S) > Weight(T) or Weight(S) = Weight(T) and S >_Lex T
-- <quotes>Ord</quotes>:     Lexicographic ordering with 1&lt;x[1,0]&lt;x[2,0]&lt;...&lt;x[1,1]&lt;x[2,1]&lt;...
-- <quotes>DegOrd</quotes>:  S > T iff Deg(S) > Deg(T) or Deg(S) = Deg(T) and S >_Ord T
-- <quotes>WOrd</quotes>:    S > T iff Weight(S) > Weight(T) or Weight(S) = Weight(T) and S >_Ord T
--
-- Use as follows:
Use Q[x[1..1,0..20]];
Use Q[x[1..1,0..20]], Ord(DiffTO(<quotes>Lex</quotes>));

DA.Weight