Difference between revisions of "ApCoCoA-1:BB.HomBBscheme"

From ApCoCoAWiki
Line 2: Line 2:
 
   <title>BB.HomBBscheme</title>
 
   <title>BB.HomBBscheme</title>
 
   <short_description>Computes the defining equations of a homogeneous border basis scheme.</short_description>
 
   <short_description>Computes the defining equations of a homogeneous border basis scheme.</short_description>
   <syntax>BB.HomBBscheme(OO:LIST):IDEAL</syntax>
+
    
 +
<syntax>
 +
BB.HomBBscheme(OO:LIST):IDEAL
 +
</syntax>
 
   <description>
 
   <description>
 
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS=K[c_{ij}].
 
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS=K[c_{ij}].

Revision as of 14:47, 24 April 2009

BB.HomBBscheme

Computes the defining equations of a homogeneous border basis scheme.

Syntax

BB.HomBBscheme(OO:LIST):IDEAL

Description

Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS=K[c_{ij}].

  • @param OO A list of terms representing an order ideal.

  • @return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].

BB.BBscheme