Difference between revisions of "ApCoCoA-1:BB.HomBBscheme"
From ApCoCoAWiki
Line 2: | Line 2: | ||
<title>BB.HomBBscheme</title> | <title>BB.HomBBscheme</title> | ||
<short_description>Computes the defining equations of a homogeneous border basis scheme.</short_description> | <short_description>Computes the defining equations of a homogeneous border basis scheme.</short_description> | ||
− | <syntax>BB.HomBBscheme(OO:LIST):IDEAL</syntax> | + | |
+ | <syntax> | ||
+ | BB.HomBBscheme(OO:LIST):IDEAL | ||
+ | </syntax> | ||
<description> | <description> | ||
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS=K[c_{ij}]. | Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS=K[c_{ij}]. |
Revision as of 14:47, 24 April 2009
BB.HomBBscheme
Computes the defining equations of a homogeneous border basis scheme.
Syntax
BB.HomBBscheme(OO:LIST):IDEAL
Description
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring BBS=K[c_{ij}].
@param OO A list of terms representing an order ideal.
@return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].