ApCoCoA-1:BB.GenericHomBB: Difference between revisions

From ApCoCoAWiki
Stadler (talk | contribs)
No edit summary
Stadler (talk | contribs)
No edit summary
Line 2: Line 2:
   <title>BB.GenericHomBB</title>
   <title>BB.GenericHomBB</title>
   <short_description>Computes a generic homogeneous border basis.</short_description>
   <short_description>Computes a generic homogeneous border basis.</short_description>
   <syntax>BB.GenericHomBB(OO:LIST):LIST</syntax>
    
<syntax>
BB.GenericHomBB(OO:LIST):LIST
</syntax>
   <description>
   <description>
Computes the <quotes>generic</quotes> homogeneous border basis w.r.t. an order ideal OO. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a <quotes>universal family ring</quotes> UF where UF=K[x_1,..,x_n,c_{ij}].
Computes the <quotes>generic</quotes> homogeneous border basis w.r.t. an order ideal OO. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a <quotes>universal family ring</quotes> UF where UF=K[x_1,..,x_n,c_{ij}].

Revision as of 14:46, 24 April 2009

BB.GenericHomBB

Computes a generic homogeneous border basis.

Syntax

BB.GenericHomBB(OO:LIST):LIST

Description

Computes the "generic" homogeneous border basis w.r.t. an order ideal OO. The input is a list of terms OO (2nd element of type POLY). The output is a list of POLY in a "universal family ring" UF where UF=K[x_1,..,x_n,c_{ij}].

  • @param OO A list of terms representing an order ideal.

  • @return A list of generic homogeneous border basis polynomials w.r.t. to an order ideal OO. The polynomials will belong to the ring UF=K[x_1,..,x_n,c_{ij}].