Difference between revisions of "ApCoCoA-1:BB.ASgens"
Line 2: | Line 2: | ||
<title>BB.ASgens</title> | <title>BB.ASgens</title> | ||
<short_description>Compute the generators of the vanishing ideal of a border basis scheme.</short_description> | <short_description>Compute the generators of the vanishing ideal of a border basis scheme.</short_description> | ||
− | <syntax>BB.ASgens(K:INT,OO:LIST):LIST</syntax> | + | |
+ | <syntax> | ||
+ | BB.ASgens(K:INT,OO:LIST):LIST | ||
+ | </syntax> | ||
<description> | <description> | ||
Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by <ref>BB.ASneighbors</ref>(OO). The inputs are an integer K in the range 1..Len(<ref>BB.ASneighbors</ref>(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring BBS=K[c_{ij}]. | Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by <ref>BB.ASneighbors</ref>(OO). The inputs are an integer K in the range 1..Len(<ref>BB.ASneighbors</ref>(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring BBS=K[c_{ij}]. |
Revision as of 14:42, 24 April 2009
BB.ASgens
Compute the generators of the vanishing ideal of a border basis scheme.
Syntax
BB.ASgens(K:INT,OO:LIST):LIST
Description
Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.ASneighbors(OO). The inputs are an integer K in the range 1..Len(BB.ASneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring BBS=K[c_{ij}].
@param K The generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.ASneighbors(OO) will be computed.
@param OO A list of terms representing an order ideal.
@return A list of generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by BB.ASneighbors(OO). The polynomials will belong to the ring BBS=K[c_{ij}].
Example
Use QQ[x,y,z]; BB.ASgens(1, [1,x,y,z]); [BBS :: c[1,5]c[2,1] - c[1,3]c[2,2] + c[1,4]c[3,1] - c[1,2]c[3,2] + c[1,2]c[4,1] - c[1,1]c[4,2], BBS :: c[2,2]c[2,3] - c[2,1]c[2,5] - c[2,4]c[3,1] + c[2,2]c[3,2] - c[2,2]c[4,1] + c[2,1]c[4,2], BBS :: c[3,2]^2 + c[2,2]c[3,3] - c[3,1]c[3,4] - c[2,1]c[3,5] - c[3,2]c[4,1] + c[3,1]c[4,2] - c[1,1], BBS :: c[3,2]c[4,2] + c[2,2]c[4,3] - c[3,1]c[4,4] - c[2,1]c[4,5] + c[1,2]] -------------------------------