Difference between revisions of "ApCoCoA-1:BB.BBscheme"
From ApCoCoAWiki
(Types section update.) |
(Example section update.) |
||
Line 12: | Line 12: | ||
</itemize> | </itemize> | ||
<example> | <example> | ||
− | Use | + | Use QQ[x,y,z]; |
BB.BBscheme([1,x]); | BB.BBscheme([1,x]); | ||
BBS :: Ideal(c[1,5]c[2,2] - c[1,4], c[1,2]c[1,5] - c[1,5]c[2,4] + c[1,4]c[2,5], | BBS :: Ideal(c[1,5]c[2,2] - c[1,4], c[1,2]c[1,5] - c[1,5]c[2,4] + c[1,4]c[2,5], |
Revision as of 13:06, 23 April 2009
BB.BBscheme
Compute the defining equations of a border basis scheme.
Syntax
BB.BBscheme(OO:LIST):IDEAL
Description
Computes the defining equations of the border basis scheme using the commutators of the multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.
@param OO A list of terms representing an order ideal.
@return A list of polynomials representing the defining equations of the border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].
Example
Use QQ[x,y,z]; BB.BBscheme([1,x]); BBS :: Ideal(c[1,5]c[2,2] - c[1,4], c[1,2]c[1,5] - c[1,5]c[2,4] + c[1,4]c[2,5], c[2,2]c[2,5] + c[1,2] - c[2,4], c[1,5]c[2,2] - c[1,4], c[1,5]c[2,1] - c[1,3], c[1,1]c[1,5] - c[1,5]c[2,3] + c[1,3]c[2,5], c[2,1]c[2,5] + c[1,1] - c[2,3], c[1,5]c[2,1] - c[1,3], c[1,4]c[2,1] - c[1,3]c[2,2], c[1,2]c[1,3] - c[1,1]c[1,4] + c[1,4]c[2,3] - c[1,3]c[2,4], c[1,2]c[2,1] - c[1,1]c[2,2] + c[2,2]c[2,3] - c[2,1]c[2,4], c[1,4]c[2,1] - c[1,3]c[2,2]) -------------------------------