Difference between revisions of "ApCoCoA-1:DA.Sep"
From ApCoCoAWiki
S schuster (talk | contribs) m (ApCoCoA:Diffalg.Sep moved to ApCoCoA:DA.Sep: To comply with style principles.) |
|||
Line 11: | Line 11: | ||
<itemize> | <itemize> | ||
− | <item>@param F A differential polynomial.</item> | + | <item>@param <em>F</em> A differential polynomial.</item> |
<item>@return The seperand of F wrt. to the current differential term ordering.</item> | <item>@return The seperand of F wrt. to the current differential term ordering.</item> | ||
</itemize> | </itemize> | ||
Line 39: | Line 39: | ||
<see>DA.Differentiate</see> | <see>DA.Differentiate</see> | ||
<see>DA.Initial</see> | <see>DA.Initial</see> | ||
+ | |||
<key>Sep</key> | <key>Sep</key> | ||
<key>DA.Sep</key> | <key>DA.Sep</key> |
Revision as of 11:10, 23 April 2009
DA.Sep
Computes the separand of a differential polynomial.
Syntax
DA.Sep(F:POLY):POLY
Description
DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectivly.
The seperand of F is just the initial of the derivative of F.
@param F A differential polynomial.
@return The seperand of F wrt. to the current differential term ordering.
Example
Use Q[x[1..2,0..20]]; Use Q[x[1..2,0..20]], Ord(DA.DiffTO("Lex")); F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2]; G:=DA.Differentiate(F); DA.Initial(G); ------------------------------- 2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2] ------------------------------- DA.Sep(F); ------------------------------- 2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2] -------------------------------