Difference between revisions of "ApCoCoA-1:BB.TransformGBIntoBB"
From ApCoCoAWiki
(Added parameter and return value list.) |
(Key and see section update.) |
||
Line 41: | Line 41: | ||
</example> | </example> | ||
</description> | </description> | ||
− | <see>BBasis</see> | + | <see>BB.BBasis</see> |
<see>GBasis</see> | <see>GBasis</see> | ||
− | <key> | + | <key>TransformGBIntoBB</key> |
− | <key> | + | <key>BB.TransformGBIntoBB</key> |
− | <key>borderbasis. | + | <key>borderbasis.TransformGBIntoBB</key> |
<wiki-category>Package_borderbasis</wiki-category> | <wiki-category>Package_borderbasis</wiki-category> | ||
</command> | </command> |
Revision as of 18:50, 22 April 2009
BB.TransformGBIntoBB
Transform a Groebner basis into a border basis.
Syntax
BB.TransformGBIntoBB(GB:LIST of POLY):LIST of POLY
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them.
Let GB be a list of polynomials that form a <formula>\sigma</formula>-Groebner basis of a zero-dimensional ideal <formula>I</formula>. This function computes the <formula>\mathcal{O}_\sigma(I)</formula>-border basis of <formula>I</formula> by using the information provided by the given <formula>\sigma</formula>-Groebner basis.
@param GB A Grobner basis of a zero-dimensional ideal.
@return A list of polynomials that represents the border basis of the zero-dimensional ideal generated by the input polynomials in GB.
Example
Use Z/(32003)[x,y,z],DegLex; I := Ideal( 4*x+5*y+6, 2*x^2*z+4*y^2*z+4*y*z^2+3*x*y+25*y^2+7*x*z+2*y-3*z, x^2*y+3*x*y*z+x*z^2+15*x^2+x*y+9*y*z+7 ); GB := GBasis(I); -- compute a Groebner basis of I BB := BB.TransformGBIntoBB(GB); BB; ------------------------------- [x + 8002y - 16000, xz + 8002yz - 16000z, xy + 8002y^2 - 16000y, y^2z - 5614yz^2 + 6179y^2 - 2246yz - 4492y - 3370z, y^3 + 12128yz^2 + 2045y^2 - 10508yz + 10240z^2 + 3337y - 8088z - 11495, xz^2 + 8002yz^2 - 16000z^2, xyz - 8984yz^2 + 277y^2 + 2809yz + 5615y - 11789z, xy^2 - 15160yz^2 + 5446y^2 + 13135yz - 12800z^2 - 12172y + 10110z + 6368, z^4 - 928yz^2 + 15802z^3 - 8546y^2 - 13286yz - 15491z^2 - 13314y + 5553z - 11227, yz^3 - 9667yz^2 + 11342z^3 + 6752y^2 + 8104yz - 15091z^2 - 950y - 15081z + 885, y^2z^2 + 1958yz^2 - 11982z^3 + 13714y^2 + 3833yz - 12303z^2 - 11335y + 4481z + 7925, xz^3 + 4083yz^2 - 14176z^3 - 8440y^2 - 10130yz + 10863z^2 - 14814y - 5151z - 9107, xyz^2 - 2446yz^2 - 1024z^3 - 1141y^2 - 12792yz + 7378z^2 + 6168y - 13602z + 14096] -------------------------------