Difference between revisions of "ApCoCoA-1:Weyl.WMulByMonom"

From ApCoCoAWiki
(New page: <command> <title>Weyl.WMulByMonom</title> <short_description>Computes the product M*F of Weyl monomial M and a Weyl polynomial F in normal form.</short_description> <syntax> Weyl...)
 
(Change Wiki-category)
Line 7: Line 7:
 
     <description>
 
     <description>
  
This method multiplies a Weyl monomial M with a polynomials F and returns <formula>M*F</formula> as a Weyl polynomial in normal form.
+
This method multiplies a Weyl monomial M with a polynomials F and returns M*F as a Weyl polynomial in normal form.
  
 
<example>
 
<example>
Line 32: Line 32:
 
     </types>
 
     </types>
 
     <key>weyl.wmulbymonom</key>
 
     <key>weyl.wmulbymonom</key>
     <wiki-category>Package_Weyl</wiki-category>
+
     <wiki-category>Package_weyl</wiki-category>
 
   </command>
 
   </command>

Revision as of 13:28, 22 April 2009

Weyl.WMulByMonom

Computes the product M*F of Weyl monomial M and a Weyl polynomial F in normal form.

Syntax

Weyl.WMulByMonom(M:POLY,F:POLY):POLY

Description


This method multiplies a Weyl monomial M with a polynomials F and returns M*F as a Weyl polynomial in normal form.

Example

A1::=QQ[x,d];	--Define appropriate ring
Use A1;
M:=x^3d^4; F:=x^3+d^3+3xd+5;
Weyl.WMulByMonom(M,F);
x^6d^4 + x^3d^7 + 3x^4d^5 + 12x^5d^3 + 17x^3d^4 + 36x^4d^2 + 24x^3d
-------------------------------
Weyl.WMulByMonom(F,M); -- note the input
ERROR: 1st parameter should be a Monomial!
CONTEXT: Error("1st parameter should be a Monomial!")
-------------------------------

Note: Monomials and polynomials that are not in normal form should be first converted in to normal form using Weyl.WNormalForm(L), otherwise you may get unexpected results.


See also

Weyl.WNormalForm

Weyl.WMul