Difference between revisions of "ApCoCoA-1:DA.DiffAutoReduce"
From ApCoCoAWiki
S schuster (talk | contribs) |
S schuster (talk | contribs) |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
− | <title> | + | <title>DA.DiffAutoReduce</title> |
− | <short_description> | + | <short_description>Computes a reduced list of differential polynomials.</short_description> |
<syntax> | <syntax> | ||
− | + | DA.DiffAutoReduce(G:LIST):LIST | |
</syntax> | </syntax> | ||
<description> | <description> | ||
− | DiffAutoReduce computes for a given set G of differential polynomials a reduced list of differential polynomials H, s.t. every element of G reduces to zero wrt. H. | + | DA.DiffAutoReduce computes for a given set G of differential polynomials a reduced list of differential polynomials H, s.t. every element of G reduces to zero wrt. H. |
<example> | <example> | ||
Use Q[x[1..1,0..20]]; | Use Q[x[1..1,0..20]]; | ||
− | Use Q[x[1..1,0..20]], Ord( | + | Use Q[x[1..1,0..20]], Ord(DA.DiffTO("Lex")); |
− | + | DA.DiffAutoReduce([x[1,2]^2+x[1,0]^2+3, x[1,1]+3x[1,0]]); | |
------------------------------- | ------------------------------- | ||
[x[1,1] + 3x[1,0], 82x[1,0]^2 + 3] | [x[1,1] + 3x[1,0], 82x[1,0]^2 + 3] | ||
Line 17: | Line 17: | ||
</example> | </example> | ||
</description> | </description> | ||
− | <see> | + | <types> |
− | <see> | + | <type>polynomial</type> |
+ | </types> | ||
+ | <see>DA.DiffTO</see> | ||
+ | <see>DA.DiffReduce</see> | ||
+ | <key>DiffAutoReduce</key> | ||
+ | <key>DA.DiffAutoReduce</key> | ||
+ | <key>diffalg.DiffAutoReduce</key> | ||
+ | <key>differential.DiffAutoReduce</key> | ||
<wiki-category>Package_diffalg</wiki-category> | <wiki-category>Package_diffalg</wiki-category> | ||
</command> | </command> |
Revision as of 12:27, 22 April 2009
DA.DiffAutoReduce
Computes a reduced list of differential polynomials.
Syntax
DA.DiffAutoReduce(G:LIST):LIST
Description
DA.DiffAutoReduce computes for a given set G of differential polynomials a reduced list of differential polynomials H, s.t. every element of G reduces to zero wrt. H.
Example
Use Q[x[1..1,0..20]]; Use Q[x[1..1,0..20]], Ord(DA.DiffTO("Lex")); DA.DiffAutoReduce([x[1,2]^2+x[1,0]^2+3, x[1,1]+3x[1,0]]); ------------------------------- [x[1,1] + 3x[1,0], 82x[1,0]^2 + 3] -------------------------------