Difference between revisions of "ApCoCoA-1:Latte.Ehrhart"

From ApCoCoAWiki
(New page: <command> <title>Latte.Ehrhart</title> <short_description> Computes the ehrhart series as a rational funktion for a polyhedral P given by a number of linear constraints</short_description>...)
 
Line 22: Line 22:
  
 
<example>
 
<example>
 
+
Use S ::= QQ[x,y];
 +
Equations := [];
 +
LesserEq := [x-1, x+y-1];
 +
GreaterEq := [x,y];
 +
Latte.Ehrhart(Equations, LesserEq, GreaterEq);
 
</example>
 
</example>
  

Revision as of 09:35, 21 April 2009

Latte.Ehrhart

Computes the ehrhart series as a rational funktion for a polyhedral P given by a number of linear constraints

Syntax

Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):RATFUN

Syntax

Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Degree: INT):RATFUN

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use

it/them.

  • @param Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints

  • @param LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints

  • @param GreaterEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints

  • @param Degree: Integer n > 0, when using this parameter, the function computes the Taylor series expansion of the Ehrhart series to degree n

  • @return The Ehrhart-series (or the Taylor series expansion to degree n of the Ehrhart series) of the polyhedral P

Example

Use S ::= QQ[x,y];
Equations := [];
LesserEq := [x-1, x+y-1];
GreaterEq := [x,y];
Latte.Ehrhart(Equations, LesserEq, GreaterEq);