Difference between revisions of "ApCoCoA-1:Weyl.WeylMul"
From ApCoCoAWiki
(Some examples are added) |
|||
Line 45: | Line 45: | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>Weyl. | + | <see>Weyl.WNormalForm</see> |
+ | <see>Weyl.WMul</see> | ||
</seealso> | </seealso> | ||
<types> | <types> |
Revision as of 10:13, 20 April 2009
Weyl.WeylMul
Computes the product F*G of Weyl polynomial F and G in normal form.
Syntax
Weyl.WeylMul(F,G):WeylPolynom
Description
This method multiplies F and G and returns <formula>F*G</formula> as a WeylPolynom in normal form.
Example
A1::=QQ[x,d]; --Define appropriate ring Use A1; F:=x; G:=d; Weyl.WeylMul(F,G); xd ------------------------------- Weyl.WeylMul(G,F); xd + 1 ------------------------------- Weyl.WeylMul(Weyl.WeylMul(G,F)-2G,F^3+G); x^4d - 2x^3d + 4x^3 + xd^2 - 6x^2 - 2d^2 + d ------------------------------- If you want to multiply Weyl polynomials that are not in normal form say for example F=d^2x^3-2dx^2+7 and G=2d^3x-5xd+3, then first convert them into normal form before multiplication. ------------------------------- F:=Weyl.WeylNormalForm([[d^2,x^3],[-2d,x^2],[7]]); F; x^3d^2 + 4x^2d + 2x + 7 ------------------------------- G:=Weyl.WeylNormalForm([[2d^3,x],[-5x,d],[3]]); G; 2xd^3 - 5xd + 6d^2 + 3 ------------------------------- Weyl.WeylMul(F,G); 2x^4d^5 - 5x^4d^3 + 18x^3d^4 - 27x^3d^2 + 36x^2d^3 + 14xd^3 - 18x^2d + 12xd^2 - 35xd + 42d^2 + 6x + 21 ------------------------------- Weyl.WeylMul(G,F); 2x^4d^5 - 5x^4d^3 + 32x^3d^4 - 32x^3d^2 + 148x^2d^3 + 14xd^3 - 38x^2d + 216xd^2 - 35xd + 42d^2 - 4x + 72d + 21 ------------------------------- Weyl.WeylMul(Weyl.WeylNormalForm([[d^2,x^3],[-2d,x^2],[7]]),Weyl.WeylNormalForm([[2d^3,x],[-5x,d],[3]])); 2x^4d^5 - 5x^4d^3 + 18x^3d^4 - 27x^3d^2 + 36x^2d^3 + 14xd^3 - 18x^2d + 12xd^2 - 35xd + 42d^2 + 6x + 21 -------------------------------
See also