Difference between revisions of "ApCoCoA-1:Num.EigenValues"
From ApCoCoAWiki
(Updated the docu) |
|||
Line 3: | Line 3: | ||
<short_description>Computes the eigenvalues of a matrix</short_description> | <short_description>Computes the eigenvalues of a matrix</short_description> | ||
<syntax> | <syntax> | ||
− | Num.EigenValues(A:Matrix): | + | Num.EigenValues(A:Matrix):B:Matrix |
</syntax> | </syntax> | ||
<description> | <description> | ||
Line 10: | Line 10: | ||
This function returns a matrix, containing numerical approximation to A's eigenvalues. | This function returns a matrix, containing numerical approximation to A's eigenvalues. | ||
The input matrix A has to be quadratic! | The input matrix A has to be quadratic! | ||
− | The output contains a matrix B. Each B's columns | + | The output contains a matrix B. Each of B's columns describes one of the eigenvalues of A. The first row of B contains the real part of the eigenvalues, the second row the imaginary ones. |
<example> | <example> |
Revision as of 13:56, 30 March 2009
Num.EigenValues
Computes the eigenvalues of a matrix
Syntax
Num.EigenValues(A:Matrix):B:Matrix
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them. Please also note that you will have to use an ApCoCoAServer with enabled BLAS/LAPACK support.
This function returns a matrix, containing numerical approximation to A's eigenvalues.
The input matrix A has to be quadratic!
The output contains a matrix B. Each of B's columns describes one of the eigenvalues of A. The first row of B contains the real part of the eigenvalues, the second row the imaginary ones.
Example
A:=Mat([[1,2,7,18],[2,4,9,12],[23,8,9,10],[7,5,3,2]]); Dec(Num.EigenValues(A),3); -- CoCoAServer: computing Cpu Time = 0.015 ------------------------------- Mat([ ["28.970", "-13.677", "0.353", "0.353"], ["0", "0", "3.051", "-3.051"] ]) -------------------------------
See also
Numerical.EigenValuesAndVectors
Numerical.EigenValuesAndAllVectors