Difference between revisions of "ApCoCoA-1:Weyl.WMul"

From ApCoCoAWiki
Line 11: Line 11:
 
This function computes a Groebner Basis for a Ideal <math>I = (f_1,f_2, ..., f_r)</math> where every generator <math>f_i</math> should be a Weyl polynomial in Normal form.
 
This function computes a Groebner Basis for a Ideal <math>I = (f_1,f_2, ..., f_r)</math> where every generator <math>f_i</math> should be a Weyl polynomial in Normal form.
  
 +
<example>
 +
A1::=QQ[x,d]; --Define appropraite ring
 +
Use A1;
 +
I:=Ideal(x,d);  -- Now start ApCoCoA server for executing next command
 +
Weyl.WeylGB(I);
 +
-- CoCoAServer: computing Cpu Time = 0
 +
-------------------------------
 +
[d, x, 1]
 +
-------------------------------
 +
Note that Groebner basis you obtained is not minimal.
 +
 +
</example>
 
   </description>
 
   </description>
 
     <seealso>
 
     <seealso>

Revision as of 12:02, 7 January 2009

Weyl.WeylGB

Computes the Groebner basis of the ideal I using corresponding

implementation in CoCoALib.

Syntax

Weyl.WeylGB(I):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use

it/them.

This function computes a Groebner Basis for a Ideal where every generator should be a Weyl polynomial in Normal form.

Example

A1::=QQ[x,d];	--Define appropraite ring
Use A1;
I:=Ideal(x,d);  -- Now start ApCoCoA server for executing next command
Weyl.WeylGB(I);
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[d, x, 1]
-------------------------------
Note that Groebner basis you obtained is not minimal.

See also

Weyl.WeylNormalForm