Difference between revisions of "ApCoCoA-1:Weyl.WMul"
From ApCoCoAWiki
Line 11: | Line 11: | ||
This function computes a Groebner Basis for a Ideal <math>I = (f_1,f_2, ..., f_r)</math> where every generator <math>f_i</math> should be a Weyl polynomial in Normal form. | This function computes a Groebner Basis for a Ideal <math>I = (f_1,f_2, ..., f_r)</math> where every generator <math>f_i</math> should be a Weyl polynomial in Normal form. | ||
+ | <example> | ||
+ | A1::=QQ[x,d]; --Define appropraite ring | ||
+ | Use A1; | ||
+ | I:=Ideal(x,d); -- Now start ApCoCoA server for executing next command | ||
+ | Weyl.WeylGB(I); | ||
+ | -- CoCoAServer: computing Cpu Time = 0 | ||
+ | ------------------------------- | ||
+ | [d, x, 1] | ||
+ | ------------------------------- | ||
+ | Note that Groebner basis you obtained is not minimal. | ||
+ | |||
+ | </example> | ||
</description> | </description> | ||
<seealso> | <seealso> |
Revision as of 12:02, 7 January 2009
Weyl.WeylGB
Computes the Groebner basis of the ideal I using corresponding
implementation in CoCoALib.
Syntax
Weyl.WeylGB(I):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them.
This function computes a Groebner Basis for a Ideal where every generator should be a Weyl polynomial in Normal form.
Example
A1::=QQ[x,d]; --Define appropraite ring Use A1; I:=Ideal(x,d); -- Now start ApCoCoA server for executing next command Weyl.WeylGB(I); -- CoCoAServer: computing Cpu Time = 0 ------------------------------- [d, x, 1] ------------------------------- Note that Groebner basis you obtained is not minimal.
See also