Difference between revisions of "ApCoCoA-1:BB.BBasis"
From ApCoCoAWiki
m (Fixed typo) |
(Added ApCoCoAServer note and updated description) |
||
Line 6: | Line 6: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
+ | {{ApCoCoAServer}} | ||
+ | |||
Let <formula>\sigma</formula> be a degree compatible term ordering. The function <tt>BBasis</tt> calls the ApCoCoAServer to compute the <formula>\mathcal{O}_\sigma(I)</formula>-border basis of the zero-dimensional input ideal <tt>I</tt> and returns it as a list of polynomials. | Let <formula>\sigma</formula> be a degree compatible term ordering. The function <tt>BBasis</tt> calls the ApCoCoAServer to compute the <formula>\mathcal{O}_\sigma(I)</formula>-border basis of the zero-dimensional input ideal <tt>I</tt> and returns it as a list of polynomials. | ||
+ | The return value will be the computed border basis. | ||
<example> | <example> | ||
Use Q[x, y], DegLex; | Use Q[x, y], DegLex; |
Revision as of 13:29, 14 November 2008
BBasis
border basis of a zero-dimensional ideal
Syntax
BBasis(I:IDEAL):LIST of POLY
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use
it/them.
Let <formula>\sigma</formula> be a degree compatible term ordering. The function BBasis calls the ApCoCoAServer to compute the <formula>\mathcal{O}_\sigma(I)</formula>-border basis of the zero-dimensional input ideal I and returns it as a list of polynomials.
The return value will be the computed border basis.
Example
Use Q[x, y], DegLex; I := Ideal([x^2, xy + y^2]); BB := BBasis(I); BB; ------------------------------- [xy + y^2, x^2, y^3, xy^2] -------------------------------