Difference between revisions of "ApCoCoA-1:BB.LiftHomND"

From ApCoCoAWiki
(Updated example)
Line 7: Line 7:
 
     <description>
 
     <description>
 
Computes the generators of the border basis scheme ideal <formula>I(\mathbb{B}^{\textrm{hom}}_\mathcal{O})</formula> that result from the lifting of next-door neighbors. The input is a list of terms OO (2nd element of type POLY). The output is a list of poly in the ring <formula>BBS=K[c_{ij}]</formula>.
 
Computes the generators of the border basis scheme ideal <formula>I(\mathbb{B}^{\textrm{hom}}_\mathcal{O})</formula> that result from the lifting of next-door neighbors. The input is a list of terms OO (2nd element of type POLY). The output is a list of poly in the ring <formula>BBS=K[c_{ij}]</formula>.
 +
<example>
 +
Use Q[x,y,z], DegRevLex;
 +
BB.LiftHomND([Poly(1), x, y, xy]);
 +
 +
[BBS :: c[3,1]c[4,4] + c[2,1] - c[4,2],
 +
BBS :: c[2,1]c[4,5] + c[3,1] - c[4,3]]
 +
-------------------------------
 +
</example>
 
     </description>
 
     </description>
 
     <key>kreuzer</key>
 
     <key>kreuzer</key>

Revision as of 20:26, 29 July 2008

BB.LiftHomND

homogeneous BBS ideal generators from lifting of ND neighbors

Syntax

BB.LiftHomND(OO:LIST):LIST

Description

Computes the generators of the border basis scheme ideal <formula>I(\mathbb{B}^{\textrm{hom}}_\mathcal{O})</formula> that result from the lifting of next-door neighbors. The input is a list of terms OO (2nd element of type POLY). The output is a list of poly in the ring <formula>BBS=K[c_{ij}]</formula>.

Example

Use Q[x,y,z], DegRevLex;
BB.LiftHomND([Poly(1), x, y, xy]);

[BBS :: c[3,1]c[4,4] + c[2,1] - c[4,2],
 BBS :: c[2,1]c[4,5] + c[3,1] - c[4,3]]
-------------------------------


BB.LiftAS

BB.LiftASViaServer

BB.LiftHomAS

BB.LiftND

BB.LiftNDViaServer