Difference between revisions of "ApCoCoA-1:BB.HomBBscheme"
From ApCoCoAWiki
KHiddemann (talk | contribs) m |
KHiddemann (talk | contribs) (new alias) |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
− | <title> | + | <title>BB.HomBBscheme</title> |
<short_description>defining equations of homogeneous border basis scheme</short_description> | <short_description>defining equations of homogeneous border basis scheme</short_description> | ||
<syntax> | <syntax> | ||
− | + | BB.HomBBscheme(OO:LIST):IDEAL | |
</syntax> | </syntax> | ||
<description> | <description> | ||
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>. | Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>. | ||
</description> | </description> | ||
− | <see> | + | <see>BB.BBscheme</see> |
<key>kreuzer</key> | <key>kreuzer</key> | ||
+ | <key>bb.hombbscheme</key> | ||
<key>borderbasis.hombbscheme</key> | <key>borderbasis.hombbscheme</key> | ||
<wiki-category>Package_borderbasis</wiki-category> | <wiki-category>Package_borderbasis</wiki-category> | ||
</command> | </command> |
Revision as of 19:48, 8 November 2007
BB.HomBBscheme
defining equations of homogeneous border basis scheme
Syntax
BB.HomBBscheme(OO:LIST):IDEAL
Description
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. The input is a list OO of terms that specify an order ideal. The second element of OO must be a non-constant polynomial. The output is an ideal in the ring <formula>BBS = K[c_{ij}]</formula>.