Difference between revisions of "ApCoCoA-1:CharP.GBasisModSquares"

From ApCoCoAWiki
m (CoCoA4.7:Char2.GBasisModSquares moved to ApCoCoA:Char2.GBasisModSquares: moving to ApCoCoA namespace)
(changed title)
Line 1: Line 1:
 
   <command>
 
   <command>
     <title>$char2.GBasisModSquares</title>
+
     <title>Char2.GBasisModSquares</title>
 
     <short_description>computing a gbasis of a given ideal, intersected with x^2-x for all indeterminates x</short_description>
 
     <short_description>computing a gbasis of a given ideal, intersected with x^2-x for all indeterminates x</short_description>
 
<syntax>
 
<syntax>
Line 15: Line 15:
 
       <see>GBasis</see>
 
       <see>GBasis</see>
 
     </seealso>
 
     </seealso>
     <wiki-category>Package_char2</wiki-category>
+
     <wiki-category>Package_char2|GBasisModSquares</wiki-category>
 
   </command>
 
   </command>

Revision as of 12:36, 24 October 2007

Char2.GBasisModSquares

computing a gbasis of a given ideal, intersected with x^2-x for all indeterminates x

Syntax

$char2.GBasisModSquares(Ideal):List

Description

This function returns reduced Groebner basis for the ideal, intersected with the ideal, created by x^2-x for all indeterminates. If x^2-x for

all indeterminates is in the ideal (e.g. the set of zeros is a subset of {0,1}^n) this method should produce the GBasis much faster!

Please be aware, that this is much more efficient if the term ordering is Lex, DegLex or DegRevLex. Otherwise, first a DegRevLex GBasis is computed and then transformed with the FGLM-algorithm.

See also

FGLM

GBasis