Difference between revisions of "ApCoCoA-1:FGLM.FGLM"

From ApCoCoAWiki
m (CoCoA:FGLM moved to ApCoCoA:FGLM: this is the apcocoa version)
m (Description update)
Line 1: Line 1:
 
   <command>
 
   <command>
 
     <title>FGLM</title>
 
     <title>FGLM</title>
     <short_description>Perform a FGLM Groebner Basis conversion</short_description>
+
     <short_description>Perform a FGLM Groebner Basis conversion using ApCoCoAServer</short_description>
 
<syntax>
 
<syntax>
 
FGLM(GBOld:LIST, M:MAT):LIST
 
FGLM(GBOld:LIST, M:MAT):LIST
Line 7: Line 7:
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
The function <tt>FGLM</tt> calls the CoCoAServer to perform a
+
The function <tt>FGLM</tt> calls the ApCoCoAServer to perform a
 
FGLM Groebner Basis conversion. The Groebner Basis contained in list
 
FGLM Groebner Basis conversion. The Groebner Basis contained in list
 
GBOld will be converted into a Groebner Basis with respect to term
 
GBOld will be converted into a Groebner Basis with respect to term

Revision as of 10:45, 22 October 2007

FGLM

Perform a FGLM Groebner Basis conversion using ApCoCoAServer

Syntax

FGLM(GBOld:LIST, M:MAT):LIST
FGLM(GBOld:LIST):LIST

Description

The function FGLM calls the ApCoCoAServer to perform a

FGLM Groebner Basis conversion. The Groebner Basis contained in list

GBOld will be converted into a Groebner Basis with respect to term ordering Ord(M), i.e. M must be a matrix specifying a term ordering. If the parameter M is not specified, CoCoA will assume M = Ord(). Please note that the resulting polynomials belong to a different ring than the ones in GBOld.

Example

Use Q[x, y, z], DegRevLex;
GBOld := [z^4 -3z^3 - 4yz + 2z^2 - y + 2z - 2, yz^2 + 2yz - 2z^2 + 1, y^2 - 2yz + z^2 - z, x + y - z];
M := LexMat(3);
GBNew := FGLM(GBOld, M);
Use Q[x, y, z], Ord(M);
-- New basis (Lex)
BringIn(GBNew);

See also

GBasis5, and more