Difference between revisions of "ApCoCoA-1:Num.SVD"
From ApCoCoAWiki
(New page: <command> <title>Numerical.SVD5</title> <short_description>Singular value decomposition of a matrix</short_description> <syntax> $numerical.SVD5(A:Matrix):List </syntax> <desc...) |
m (fixing the title.) |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
− | <title>Numerical. | + | <title>Numerical.SVD</title> |
<short_description>Singular value decomposition of a matrix</short_description> | <short_description>Singular value decomposition of a matrix</short_description> | ||
<syntax> | <syntax> | ||
− | $numerical. | + | $numerical.SVD(A:Matrix):List |
</syntax> | </syntax> | ||
<description> | <description> |
Revision as of 14:12, 11 October 2007
Numerical.SVD
Singular value decomposition of a matrix
Syntax
$numerical.SVD(A:Matrix):List
Description
This function returns a list of three matrices which form the singular
value decomposition of the input matrix. The list produced is [U, S, VT].
Warning: internally floating point values are used, so the result is only approximate.
Example
D:=Mat([[1,2,7,18],[2,4,9,12],[23,8,9,10]]); $numerical.SVD5(D); ------------------------------- [Mat([ [-2608957845014309/4503599627370496, 3400715993947695/4503599627370496, -1196230415249177/4503599627370496, -5542055005031021/36028797018963968], [-4803191187447087/18014398509481984, 4289880920686871/36028797018963968, 3813211715037953/9007199254740992, 7724713654272699/9007199254740992], [-7645273287337725/18014398509481984, -5741692259075309/36028797018963968, 3381220959856661/4503599627370496, -540919752203371/1125899906842624], [-5789886178591733/9007199254740992, -2813340077166513/4503599627370496, -7780633724302695/18014398509481984, 3606131681355807/36028797018963968] ]), Mat([ [1164315100749939/35184372088832, 4798366071344577/281474976710656, 3788674137264815/1125899906842624] ]), Mat([ [-8521591816535737/18014398509481984, -3744869794805223/9007199254740992, -6996513907843673/9007199254740992], [-3002889242741505/4503599627370496, -7337996657000815/18014398509481984, 2810636692253967/4503599627370496], [-5187087952406809/9007199254740992, 915526145687749/1125899906842624, -6091132379868651/72057594037927936] ])] -------------------------------
See also
Numerical.EigenValuesAndVectors
Numerical.EigenValuesAndAllVectors