Difference between revisions of "Package glpk"
Andraschko (talk | contribs) (added MIPSolve, categories, version and windows info) |
Andraschko (talk | contribs) (simplified one point) |
||
Line 22: | Line 22: | ||
h_{s_3}(b) & \geq & 0. | h_{s_3}(b) & \geq & 0. | ||
\end{array}\right.</math> | \end{array}\right.</math> | ||
− | Then the function <code>[[/GLPK.LPSolve/]]</code> can be used to find solution <math>b \in [l_1,u_1] \times \cdots \times [l_n,u_n]</math> to <math>S</math> such that <math>c(b) = \min\{c(x) \mid x \in [l_1,u_1] \times \cdots \times [l_n,u_n] \text{ is a solution to } S\}</math> in the following way. | + | Then the function <code>[[/GLPK.LPSolve/]]</code> can be used to find solution <math>b = (b_1,\ldots,b_n) \in [l_1,u_1] \times \cdots \times [l_n,u_n]</math> to <math>S</math> such that <math>c(b) = \min\{c(x) \mid x \in [l_1,u_1] \times \cdots \times [l_n,u_n] \text{ is a solution to } S\}</math> in the following way. |
*Let <code>EQ</code> be the list <math>\{f_1,\ldots,f_{s_1}\}</math>, let <code>LE</code> be the list <math>\{g_1,\ldots,g_{s_2}\}</math>, and let <code>GE</code> be the list <math>\{h_1,\ldots,h_{s_3}\}</math>. | *Let <code>EQ</code> be the list <math>\{f_1,\ldots,f_{s_1}\}</math>, let <code>LE</code> be the list <math>\{g_1,\ldots,g_{s_2}\}</math>, and let <code>GE</code> be the list <math>\{h_1,\ldots,h_{s_3}\}</math>. | ||
− | *Let <code>l</code> and <code>u</code> be lists with <code>l[i]</code><math> = l_i</math> | + | *Let <code>l</code> and <code>u</code> be the lists containing the upper and lower bounds for the <math>b_i</math> with <code>l[i]</code><math> = l_i</math> and <code>u[i]</code><math> = u_i</math>, if both are rational numbers. Instead of <math>\infty</math> and <math>- \infty</math>, write <code>l[i] = ""</code> or <code>u[i] = ""</code>. Set <code>B := [ [l[1],u[1]], [l[2],u[2]], ..., [l[n],u[n]] ]</code>. |
*Choose a string <code>Method</code> from <code>[ "InterP", "Simplex" ]</code> depending on the method you want GLPK to use for solving the problem (<code>"InterP"</code> stands for the inter-point-method and <code>"Simplex"</code> for the simplex method) | *Choose a string <code>Method</code> from <code>[ "InterP", "Simplex" ]</code> depending on the method you want GLPK to use for solving the problem (<code>"InterP"</code> stands for the inter-point-method and <code>"Simplex"</code> for the simplex method) | ||
*Choose a string <code>MinMax</code> from <code>[ "Min", "Max" ]</code> depending on whether you want <math>b</math> to fulfill <math>c(b) = \min\{c(x) \mid x \in [l_1,u_1] \times \cdots \times [l_n,u_n] \text{ is a solution to } S\}</math> or <math>c(b) = \max\{c(x) \mid x \in [l_1,u_1] \times \cdots \times [l_n,u_n] \text{ is a solution to } S\}</math>. | *Choose a string <code>MinMax</code> from <code>[ "Min", "Max" ]</code> depending on whether you want <math>b</math> to fulfill <math>c(b) = \min\{c(x) \mid x \in [l_1,u_1] \times \cdots \times [l_n,u_n] \text{ is a solution to } S\}</math> or <math>c(b) = \max\{c(x) \mid x \in [l_1,u_1] \times \cdots \times [l_n,u_n] \text{ is a solution to } S\}</math>. |
Revision as of 15:40, 1 November 2020
This article is about a function from ApCoCoA-2. If you are looking for the ApCoCoA-1 version of it, see Category:ApCoCoA-1:Package glpk. |
This page describes the glpk package. For a complete list of functions, see Category:Package glpk.
The basic idea behind this package is to make the linear optimization program GLPK usable in/with ApCoCoA. The package GLPK contains various functions that let you make use of the GLPK library, rather the stand-alone LP/MIP Solver glpsol.
Important: For usage under linux, the GLPK-Program glpsol must be in the ApCoCoA package directory under packages/binaries/glpk/examples/glpsol
and you must have the permissions to read and write in this directory. For Windows, the glsol.exe has to be in the folder \packages\binaries\glpk\w64\glpsol.exe
. If you installed ApCoCoA-2 together with the GUI, this should already be the case.
The source code of GLPK can be downloaded at [1].
Optimizing Linear Systems Of Equations
- See also: GLPK.LPSolve
Let and . Let be linear polynomials and let . Let be the system of polynomial (in)equations
Then the function GLPK.LPSolve
can be used to find solution to such that in the following way.
- Let
EQ
be the list , letLE
be the list , and letGE
be the list . - Let
l
andu
be the lists containing the upper and lower bounds for the withl[i]
andu[i]
, if both are rational numbers. Instead of and , writel[i] = ""
oru[i] = ""
. SetB := [ [l[1],u[1]], [l[2],u[2]], ..., [l[n],u[n]] ]
. - Choose a string
Method
from[ "InterP", "Simplex" ]
depending on the method you want GLPK to use for solving the problem ("InterP"
stands for the inter-point-method and"Simplex"
for the simplex method) - Choose a string
MinMax
from[ "Min", "Max" ]
depending on whether you want to fulfill or .
Then call
GLPK.LPSolve(c,EQ,LE,GE,B,Method,MinMax)
to get the desired solution as a list b = [b1,...,bn]
or the empty list []
if the given system of (in)equalities is unsatisfiable.
Solving Mixed Integer Problems
- See also: GLPK.MIPSolve
Let with . If additionally, a solution with for and for is searched, then one can use the function GLPK.MIPSolve
. Together with c
, EQ
, LE
, GE
, B
and MinMax
from above, the code
GLPK.MIPSolve(c,EQ,LE,GE,B,Method,MinMax)
produces the desired solution or []
if the given system has no such solution.