Difference between revisions of "Package sagbi/SB.GetLTSA"

From ApCoCoAWiki
(Created page with "{{Version|2}} <command> <title>SB.GetLTSA</title> <short_description>This function returns the leading term subalgebra of a given Subalgebra.</short_description> <syn...")
 
(changed example)
Line 15: Line 15:
 
     <example>
 
     <example>
 
Use R ::= QQ[x,y,z];
 
Use R ::= QQ[x,y,z];
S := SB.Subalgebra(R,[x^2,y+z]);
+
S := SB.Subalgebra(R,[x^2,x^2+y]);
 
PrintLn SB.GetLTSA(ref S);
 
PrintLn SB.GetLTSA(ref S);
-- SubalgebraWithID(2, QQ[x^2,  y]) of RingWithID(1311, "QQ[x,y,z]")
+
-- SubalgebraWithID(2, QQ[y,  x^2]) of RingWithID(1311, "QQ[x,y,z]")
 
PrintLn SB.GetLTSA(ref S);
 
PrintLn SB.GetLTSA(ref S);
-- SubalgebraWithID(3, QQ[x^2,  y]) of RingWithID(1311, "QQ[x,y,z]")</example>
+
-- SubalgebraWithID(3, QQ[y,  x^2]) of RingWithID(1311, "QQ[x,y,z]")</example>
 
   </description>
 
   </description>
  

Revision as of 11:02, 28 October 2020

This article is about a function from ApCoCoA-2.

SB.GetLTSA

This function returns the leading term subalgebra of a given Subalgebra.

Syntax

SB.GetLTSA(ref S: TAGGED(<quotes>$apcocoa/sagbi.Subalgebra</quotes>)): TAGGED(<quotes>$apcocoa/sagbi.Subalgebra</quotes>)

Description

Returns the leading term subalgebra of S, i.e. the subalgebra generated by all terms appearing as the leading term of a polynomial in S.

Note: Calling the function more than once results in equal subalgebras with different IDs.

  • @param S A subalgebra

  • @return the leading term subalgebra of S

Example

Use R ::= QQ[x,y,z];
S := SB.Subalgebra(R,[x^2,x^2+y]);
PrintLn SB.GetLTSA(ref S);
-- SubalgebraWithID(2, QQ[y,  x^2]) of RingWithID(1311, "QQ[x,y,z]")
PrintLn SB.GetLTSA(ref S);
-- SubalgebraWithID(3, QQ[y,  x^2]) of RingWithID(1311, "QQ[x,y,z]")

See also

Package sagbi/SB.GetID

Package sagbi/SB.GetRing

Package sagbi/SB.GetGens

Package sagbi/SB.GetCoeffRing

Package sagbi/SB.GetSAGBI

Package sagbi/SB.GetTruncSAGBI

Package sagbi/SB.GetTruncDeg

Package sagbi/SB.GetInDeg

Package sagbi/SB.GetHS