Difference between revisions of "Package sagbi/SB.IsInSA"
From ApCoCoAWiki
Andraschko (talk | contribs) (added see item) |
Andraschko (talk | contribs) (added see item) |
||
Line 24: | Line 24: | ||
<seealso> | <seealso> | ||
+ | <see>Package sagbi/SB.Subalgebra</see> | ||
<see>Package sagbi/SB.IsInSA_SAGBI</see> | <see>Package sagbi/SB.IsInSA_SAGBI</see> | ||
<see>Package sagbi/SB.IsInSubalgebra</see> | <see>Package sagbi/SB.IsInSubalgebra</see> |
Revision as of 12:44, 26 October 2020
This article is about a function from ApCoCoA-2. |
SB.IsInSA
This function tests whether a polynomial is in a given Subalgebra.
Syntax
SB.IsInSA(f: RINGELEM,S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL
Description
This function takes a polynomial f and a subalgebra S and tests whether f is an element of S using implicitization.
@param f A polynomial
@param S A subalgebra, i.e. of type TAGGED("$apcocoa/sagbi.Subalgebra")
@return true if f is an element of S and false if not.
Example
Use R ::= QQ[x,y,z]; S := SB.Subalgebra(R,[x^2,y+z]); f := x^4 +2*x^3*y +x^2*y^2 +x^2 +2*x*y +y^2; SB.IsInSA(f,S); -- true
See also
Package sagbi/SB.IsInSubalgebra
Package sagbi/SB.IsInSubalgebra_SAGBI
Package sagbi/SB.IsInToricRing