Difference between revisions of "Package sagbi/SB.SAGBI"

From ApCoCoAWiki
m (Andraschko moved page Package SAGBI/SB.SAGBI to Package sagbi/SB.SAGBI without leaving a redirect)
m (changed category)
Line 37: Line 37:
 
   <key>sb.sagbi</key>
 
   <key>sb.sagbi</key>
 
   <key>sagbi.sagbi</key>
 
   <key>sagbi.sagbi</key>
   <wiki-category>ApCoCoA-2.0/Package_sagbi</wiki-category>
+
   <wiki-category>Package_sagbi</wiki-category>
 
</command>
 
</command>

Revision as of 14:12, 3 October 2020

This article is about a function from ApCoCoA-2. If you are looking for the ApCoCoA-1 version of it, see ApCoCoA:SB.Sagbi.

SB.SAGBI

Computes a finite SAGBI-basis of a subalgebra if existing.

Syntax

SB.SAGBI(G:LIST of POLY):LIST of POLY

Description

This function computes a finite SAGBI-basis of a subalgebra S generated by the polynomials of the list G, if a finite SAGBI-basis of S is existing. Then a list of polynomials is returned which form a SAGBI-basis of S. Otherwise the computation runs until it is interrupted.

  • @param G A list of polynomials which generates a subalgebra.

  • @return A list of polynomials which form a finite SAGBI-basis of the subalgebra generated by G.

Example

Use QQ[x[1..3]];
S := SB.SAGBI([x[1]^2-x[3]^2,x[1]*x[2]+x[3]^2,x[2]^2-2*x[3]^2]);
indent(S);
-----------------------------------------------------------------------------
[
  x[2]^2 -2*x[3]^2,
  x[1]*x[2] +x[3]^2,
  x[1]^2 -x[3]^2,
  x[1]^2*x[3]^2 +x[1]*x[2]*x[3]^2 +(1/2)*x[2]^2*x[3]^2 +(-1/2)*x[3]^4
]