Difference between revisions of "Package sagbi/SB.IsInSubalgebra SAGBI"

From ApCoCoAWiki
(Created page with "{| cellspacing="8" cellpadding="0" style="background-color:#eeeeff; width:100%; font-size:95%; border-bottom: 2px solid blue; border-top: 2px solid blue; position:top; clear:b...")
 
m (replaced version info by template)
Line 1: Line 1:
{| cellspacing="8" cellpadding="0" style="background-color:#eeeeff; width:100%; font-size:95%; border-bottom: 2px solid blue; border-top: 2px solid blue; position:top; clear:both;"
+
{{Version|2}}
| This article is about a function in [[ApCoCoA:Downloads#ApCoCoA-2.0 Beta|ApCoCoA-2.0]].
 
|}
 
 
<command>
 
<command>
 
   <title>SB.IsInSubalgebra_SAGBI</title>
 
   <title>SB.IsInSubalgebra_SAGBI</title>

Revision as of 10:44, 3 October 2020

This article is about a function from ApCoCoA-2.

SB.IsInSubalgebra_SAGBI

Tests whether a polynomial is in a standard-graded subalgebra using SAGBI bases.

Syntax

SB.IsInSubalgebra_SAGBI(f:POLY, G:LIST of POLY):BOOL

Description

This function takes a polynomials f and a list of homogeneous polynomials G and checks whether F is in the algebra generated by the polynomials in G using truncated SAGBI bases.

  • @param f A polynomial.

  • @param G A list of homogeneous polynomials which generate a subalgebra.

  • @return true if f is in the subalgebra generated by G, false elsewise.

Example

Use QQ[x[1..2]];
G := [x[1]-x[2], x[1]*x[2]-x[2]^2, x[1]*x[2]^2];
SB.IsInSubalgebra_SAGBI(x[1]*x[2]^4-x[2]^5, G);
-----------------------------------------------------------------------------
true

Example

Use QQ[y[1..3]];
G := [y[1]^2-y[3]^2, y[1]*y[2]+y[3]^2, y[2]^2-2*y[3]^2];
SB.IsInSubalgebra_SAGBI(y[3]^4, G);
-----------------------------------------------------------------------------
false