Difference between revisions of "ApCoCoA-1:NCo.LWIdeal"
From ApCoCoAWiki
m (Bot: Category moved) |
|||
Line 38: | Line 38: | ||
<key>NCo.LWIdeal</key> | <key>NCo.LWIdeal</key> | ||
<key>LWIdeal</key> | <key>LWIdeal</key> | ||
− | <wiki-category>Package_gbmr</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_gbmr</wiki-category> |
</command> | </command> |
Revision as of 16:27, 2 October 2020
NCo.LWIdeal
Leading word ideal of a finitely generated two-sided ideal in a free monoid ring.
Syntax
Description
Proposition: Let I be a finitely generated two-sided ideal in a free monoid ring K<X>, and let Ordering be a word ordering on <X>. If G is a Groebner basis of I with respect to Ordering. Then the leading word set LW{G}:={LW(g): g in G} is a generating system of the leading word ideal LW(I) with respect to Ordering.
Example
NCo.SetX("xyzt"); NCo.SetOrdering("LLEX"); F1 := [[1,"xx"], [-1,"yx"]]; F2 := [[1,"xy"], [-1,"ty"]]; F3 := [[1,"xt"], [-1,"tx"]]; F4 := [[1,"yt"], [-1,"ty"]]; G := [F1,F2,F3,F4]; GB:=NCo.GB(G); [NCo.LW(E) | E In GB]; -- the leading word ideal of <G> w.r.t. the length-lexicographic word ordering ["yt", "xt", "xy", "xx", "tyy", "yyx"] -------------------------------
See also