Difference between revisions of "ApCoCoA-1:GLPK.RPCSolve"
m (Bot: Category moved) |
|||
Line 120: | Line 120: | ||
<key>solve lp</key> | <key>solve lp</key> | ||
<key>GLPK.rpcsolve</key> | <key>GLPK.rpcsolve</key> | ||
− | <wiki-category>Package_glpk</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_glpk</wiki-category> |
</command> | </command> |
Revision as of 16:14, 2 October 2020
GLPK.RPCSolve
Solves a system of polynomial equations over F_2 for one solution in F_2^n.
Syntax
GLPK.RPCSolve(F:LIST, QStrategy:INT, CStrategy:INT, MinMax:STRING):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function finds one solution in F_2^n of a system of polynomial equations over the field F_2. It uses Real Polynomial Conversion (RPC) along with some strategies from propositional logic to model a mixed integer linear programming problem. Then the modelled mixed integer linear programming problem is solved using glpk.
@param F: A List containing the polynomials of the given system.
@param QStrategy: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; 2 - Double Linear Partner; 3 - Quadratic Partner;
@param CStrategy: Strategy for cubic substitution. 0 - Standard; and 1 - Quadratic Partner;
@param MinMax: Optimization direction i.e. minimization ("Min") or maximization ("Max").
@return A list containing a zero of the system F.
Example
Use Z/(2)[x[1..4]]; F:=[ x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 ]; QStrategy:=0; CStrategy:=0; MinMax:=<quotes>Max</quotes>; -- Then we compute the solution with GLPK.RPCSolve(F, QStrategy, CStrategy, MinMax); -- The result will be the following: Modelling the system as a mixed integer programming problem. QStrategy: Standard, CStrategy: Standard. Model is ready to solve with GLPK... Solution Status: INTEGER OPTIMAL Value of objective function: 2 [0, 1, 0, 1] -------------------------------
Example
Use S::=Z/(2)[x[1..5]]; F:=[ x[1]x[5] + x[3]x[5] + x[4]x[5] + x[1] + x[4], x[1]x[2] + x[1]x[4] + x[3]x[4] + x[1]x[5] + x[2]x[5] + x[3]x[5] + x[1] + x[4] + x[5] + 1, x[1]x[2] + x[4]x[5] + x[1] + x[2] + x[4], x[1]x[4] + x[3]x[4] + x[2]x[5] + x[1] + x[2] + x[4] + x[5] + 1, x[1]x[4] + x[2]x[4] + x[3]x[4] + x[2]x[5] + x[4]x[5] + x[1] + x[2] + x[4] + x[5] ]; QStrategy:=1; CStrategy:=0; MinMax:=<quotes>Max</quotes>; -- Then we compute the solution with GLPK.RPCSolve(F, QStrategy, CStrategy, MinMax); -- The result will be the following: Modelling the system as a mixed integer programming problem. QStrategy: LinearPartner, CStrategy: Standard. Model is ready to solve with GLPK... Solution Status: INTEGER OPTIMAL Value of objective function: 4 [1, 1, 1, 1, 0] -------------------------------
Example
Use ZZ/(2)[x[1..3]]; F := [ x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[3] +1, x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[2], x[1]x[2] + x[2]x[3] + x[2] ]; QStrategy:=0; CStrategy:=1; MinMax:=<quotes>Max</quotes>; -- Then we compute the solution with GLPK.RPCSolve(F, QStrategy, CStrategy, MinMax); -- The result will be the following: Modelling the system as a mixed integer programming problem. QStrategy: Standard, CStrategy: CubicParnterDegree2. Model is ready to solve with GLPK... Solution Status: INTEGER OPTIMAL Value of objective function: 1 [0, 0, 1] -------------------------------