Difference between revisions of "ApCoCoA-1:Mathieu11 group"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
StrohmeierB (talk | contribs) |
||
Line 1: | Line 1: | ||
− | === <div id="Mathieu11_group">[[:ApCoCoA:Symbolic data#Mathieu11_group|Mathieu | + | === <div id="Mathieu11_group">[[:ApCoCoA:Symbolic data#Mathieu11_group|Mathieu Group M {11}]]</div> === |
==== Description ==== | ==== Description ==== | ||
The Mathieu group M11 is a sporadic group with order 7920 and it is a subgroup of the monstergroup. | The Mathieu group M11 is a sporadic group with order 7920 and it is a subgroup of the monstergroup. |
Latest revision as of 21:00, 22 April 2014
Description
The Mathieu group M11 is a sporadic group with order 7920 and it is a subgroup of the monstergroup.
Reference
ATLAS of Finite Group Representations - Version 3
Computation
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsMathieuM11() Relations:=[]; // add the relation a^2 = 1 Append(Relations,[[a,a],[1]]); // add the relation b^4 = 1 Append(Relations,[[b,b,b,b],[1]]); //add the relation (ab)^11 = 1 Append(Relations, [[a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b],[1]]); //add the relation (ab^2)^6 = 1 Append(Relations,[[a,b,b,a,b,b,a,b,b,a,b,b,a,b,b,a,b,b],[1]]); //add the relation ababab^{-1}abab^2ab^{-1}abab^{-1}ab^{-1} = 1 Append(Relations,[[a,b,a,b,a,b,b,b,a,b,a,b,b,a,b,b,b,a,b,a,b,b,b,a,b,b,b],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsMathieuM11(); Relations; Gb:=NC.GB(Relations,31,1,100,1000); Gb;
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-03-26" createdBy="strohmeier"> <vars>a,b</vars> <uptoDeg>27</uptoDeg> <basis> <ncpoly>a*a-1</ncpoly> <ncpoly>b*b*b*b-1</ncpoly> <ncpoly>(a*b)^11-1</ncpoly> <ncpoly>(a*b*b)^6-1</ncpoly> <ncpoly>a*b*a*b*a*b*b*b*a*b*a*b*b*a*b*b*b*a*b*a*b*b*b*a*b*b*b-1</ncpoly> </basis> <Comment>The partial LLex Gb has 15 elements</Comment> <Comment>Mathieu group_M_{11}</Comment> </FREEALGEBRA>