Difference between revisions of "ApCoCoA-1:Thompson group"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
StrohmeierB (talk | contribs) |
||
Line 66: | Line 66: | ||
==== Alternative Computation ==== | ==== Alternative Computation ==== | ||
+ | |||
+ | /*Use the ApCoCoA package ncpoly.*/ | ||
+ | |||
+ | // Define the variable k,n of the thompson group | ||
+ | // MEMORY.N has to be MEMORY.K+2 | ||
+ | MEMORY.N:=5; | ||
+ | MEMORY.K:=3; | ||
+ | |||
+ | Use ZZ/(2)[x[1..MEMORY.N],y[1..MEMORY.N]]; | ||
+ | NC.SetOrdering("LLEX"); | ||
+ | |||
+ | Define CreateRelationsthomp() | ||
+ | Relations:=[]; | ||
+ | For Index1 := 1 To MEMORY.N Do | ||
+ | Append(Relations,[[x[Index1],y[Index1]],[1]]); | ||
+ | Append(Relations,[[y[Index1],x[Index1]],[1]]); | ||
+ | EndFor; | ||
+ | |||
+ | For Index2 := 1 To MEMORY.K Do | ||
+ | For Index1 := 2 To MEMORY.N-1 Do | ||
+ | If (Index1 > Index2) Then | ||
+ | Append(Relations,[[y[Index2],x[Index1],x[Index2]],[x[Index1+1]]]); | ||
+ | EndIf | ||
+ | EndFor; | ||
+ | EndFor; | ||
+ | Return Relations; | ||
+ | EndDefine; | ||
+ | |||
+ | Relations:=CreateRelationsthomp(); | ||
+ | Relations; | ||
+ | |||
+ | Gb:=NC.GB(Relations,31,1,100,1000); | ||
+ | Gb; |
Revision as of 12:29, 28 March 2014
Description
The Thompson group can be regarded as the group of piecewise-linear, orientation-preserving homeomorphisms of the unit interval which have breakpoints only at dyadic points and on intervals of differentiability the slopes are powers of two. A representation is given by:
T = <a,b | [ab^{-1},a^{-1}ba] = [ab^{-1},a^{-2}ba^{2}] = 1>
or alternative:
Th = <x_{0},x_{1},x_{2},... | x_{k}^{-1}x_{n}x_{k} = x_{n+1} for all k < n>
Reference
NEW PRESENTATIONS OF THOMPSON'S GROUPS AND APPLICATIONS: UFFE HAAGERUP AND GABRIEL PICIOROAGA
Computation
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b,c,d]; NC.SetOrdering("LLEX"); Define CreateRelationsThompson() Relations:=[]; // add the inverse relations Append(Relations,[[a,c],[1]]); Append(Relations,[[c,a],[1]]); Append(Relations,[[b,d],[1]]); Append(Relations,[[d,b],[1]]); //add the relation [ad,a^{-1}ba] = 1 // the commutator of [ad,a^{-1}ba] is a,d,c,b,a,b,c,c,d,a Append(Relations,[[a,d,c,b,a,b,c,c,d,a],[1]]); //add the relation [ad,a^{-1}ba] = 1 // the commutator of [ad,a^{-2}ba^2] is a,d,c,c,b,a,a,b,c,c^2,d,a^2 Append(Relations,[[a,d,c,c,b,a,a,b,c,c^2,d,a^2],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsThompson(); Relations; Gb:=NC.GB(Relations,31,1,100,1000); Gb;
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> <vars>a,b,c,d</vars> <uptoDeg>11</uptoDeg> <basis> <ncpoly>a*c-1</ncpoly> <ncpoly>c*a-1</ncpoly> <ncpoly>b*d-1</ncpoly> <ncpoly>d*b-1</ncpoly> <ncpoly>a*d*c*b*a*b*c*c*d*a-1</ncpoly> <ncpoly>a*d*c*c*b*a*a*b*c*c^2*d*a^2-1</ncpoly> </basis> <Comment>The partial LLex Gb has 393 elements</Comment> <Comment>Thompson_group</Comment> </FREEALGEBRA> <Comment> Commutators [g,h] = ghg^{-1}h^{-1} [ad,cba]=a*d*c*b*a*b*c*c*d*a [ad,ccbaa]=a*d*c*c*b*a*a*b*c*c^2*d*a^2 </Comment>
Alternative Computation
/*Use the ApCoCoA package ncpoly.*/ // Define the variable k,n of the thompson group // MEMORY.N has to be MEMORY.K+2 MEMORY.N:=5; MEMORY.K:=3; Use ZZ/(2)[x[1..MEMORY.N],y[1..MEMORY.N]]; NC.SetOrdering("LLEX"); Define CreateRelationsthomp() Relations:=[]; For Index1 := 1 To MEMORY.N Do Append(Relations,[[x[Index1],y[Index1]],[1]]); Append(Relations,[[y[Index1],x[Index1]],[1]]); EndFor; For Index2 := 1 To MEMORY.K Do For Index1 := 2 To MEMORY.N-1 Do If (Index1 > Index2) Then Append(Relations,[[y[Index2],x[Index1],x[Index2]],[x[Index1+1]]]); EndIf EndFor; EndFor; Return Relations; EndDefine; Relations:=CreateRelationsthomp(); Relations; Gb:=NC.GB(Relations,31,1,100,1000); Gb;