Difference between revisions of "ApCoCoA-1:Other12 groups"
From ApCoCoAWiki
Line 16: | Line 16: | ||
MEMORY.B := 3; | MEMORY.B := 3; | ||
MEMORY.N := 4; | MEMORY.N := 4; | ||
+ | |||
// x is invers to z, t has an implicit invers (Relation: t^{n} = 1) | // x is invers to z, t has an implicit invers (Relation: t^{n} = 1) | ||
Use ZZ/(2)[x,t,z]; | Use ZZ/(2)[x,t,z]; | ||
NC.SetOrdering("LLEX"); | NC.SetOrdering("LLEX"); | ||
+ | |||
Define CreateRelationsOther12() | Define CreateRelationsOther12() | ||
Relations:=[]; | Relations:=[]; | ||
Line 39: | Line 41: | ||
Append(RelationBuffer1,t^(MEMORY.N-1)); | Append(RelationBuffer1,t^(MEMORY.N-1)); | ||
Append(Relations,[RelationBuffer1,[x^MEMORY.B]]); | Append(Relations,[RelationBuffer1,[x^MEMORY.B]]); | ||
+ | |||
Return Relations; | Return Relations; | ||
EndDefine; | EndDefine; | ||
Relations:=CreateRelationsOther12(); | Relations:=CreateRelationsOther12(); | ||
− | + | Gb:=NC.GB(Relations,31,1,100,1000); |
Revision as of 02:38, 24 September 2013
Description
This group has the following finite representation:
G = <x,t | tx^{a}t^{-1} = x^{b},t^{n} = 1>
for a,b >= 1 and n >= 2.
Reference
No reference available
Computation
/*Use the ApCoCoA package ncpoly.*/ // Note that a,b >= 1 and n >= 2 MEMORY.A := 3; MEMORY.B := 3; MEMORY.N := 4; // x is invers to z, t has an implicit invers (Relation: t^{n} = 1) Use ZZ/(2)[x,t,z]; NC.SetOrdering("LLEX"); Define CreateRelationsOther12() Relations:=[]; // add the invers relations xz = zx = 1 Append(Relations,[[x,z],[1]]); Append(Relations,[[z,x],[1]]); // add the relation t^{n} = 1 RelationBuffer0:=[]; For Index0:=1 To MEMORY.N Do Append(RelationBuffer0,t); EndFor; Append(Relations,[RelationBuffer0,[1]]); // add the relation tx^{a}t^{-1} = x^{b} RelationBuffer1:=[]; Append(RelationBuffer1,t); Append(RelationBuffer1,x^(MEMORY.A)); Append(RelationBuffer1,t^(MEMORY.N-1)); Append(Relations,[RelationBuffer1,[x^MEMORY.B]]); Return Relations; EndDefine; Relations:=CreateRelationsOther12(); Gb:=NC.GB(Relations,31,1,100,1000);