Difference between revisions of "ApCoCoA-1:Other2 groups"
From ApCoCoAWiki
Line 31: | Line 31: | ||
Relations:=CreateRelationsOther2(); | Relations:=CreateRelationsOther2(); | ||
− | + | Gb:=NC.GB(Relations,31,1,100,1000); | |
==== Computation of H ==== | ==== Computation of H ==== |
Revision as of 10:02, 23 September 2013
Description
The first group is called Rosenberger-Monster and is the largest finite generalized triangle group. A finite representation of G is given below:
G = <a,b | a^2 = b^3 = (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1>
The second group is already infinite and denoted by H:
H = <a,b | a^2 = b^3 = (abababab^{2}abab^{2}ab^{2})^2 = 1>
Reference
On the Rosenberger Monster Robert Fitzgerald Morse, Department of Electrical Engineering and Computer Science, University of Evansville IN 47722 USA
Computation of G
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsOther2() Relations:=[]; // add the relations a^2 = b^3 = 1 Append(Relations,[[a,a],[1]]); Append(Relations,[[b,b,b],[1]]); // add the relation (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther2(); Gb:=NC.GB(Relations,31,1,100,1000);
Computation of H
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsOther3() Relations:=[]; // add the relations a^2 = b^3 = 1 Append(Relations,[[a,a],[1]]); Append(Relations,[[b,b,b],[1]]); // add the relation (abababab^{2}abab^{2}ab^{2})^2 = 1 Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b,a,b^2,a,b^2],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther3(); Gb:=NC.GB(Relations,31,1,100,1000);