Difference between revisions of "Group Examples"

From ApCoCoAWiki
Line 178: Line 178:
 
  1) G = <a,b | a^{2}b^{-6} = (ab^{-1})^{3}ab^{-2}ab^{k}a^{-1}b = 1>
 
  1) G = <a,b | a^{2}b^{-6} = (ab^{-1})^{3}ab^{-2}ab^{k}a^{-1}b = 1>
 
  where k is congruent to 3 mod 6.
 
  where k is congruent to 3 mod 6.
 +
[[:ApCoCoA:Other1 groups|Computations of the other group 1]]
  
 
The next group, denoted by G, is the largest finite generalized triangle group and called the Rosenberger Monster. This group has
 
The next group, denoted by G, is the largest finite generalized triangle group and called the Rosenberger Monster. This group has
Line 184: Line 185:
 
Levai, Rosenberger and Souvignier showed that G is finite an the group below, denoted by H, is infinite.
 
Levai, Rosenberger and Souvignier showed that G is finite an the group below, denoted by H, is infinite.
 
  3) H = <a,b | a^2 = b^3 = (abababab^{2}abab^{2}ab^{2})^2 = 1>
 
  3) H = <a,b | a^2 = b^3 = (abababab^{2}abab^{2}ab^{2})^2 = 1>
 +
[[:ApCoCoA:Other2 groups|Computations of the other groups 2 and 3]]
  
 
This group is an example of a generalized triangle group with order |G| = 1440
 
This group is an example of a generalized triangle group with order |G| = 1440
 
  4) G = <a,b | a^2 = b^3 = (ababab^{2})^{3} = 1>
 
  4) G = <a,b | a^2 = b^3 = (ababab^{2})^{3} = 1>
 +
[[:ApCoCoA:Other4 groups|Computations of the other group 4]]
  
 
The following groups, denoted by G and H, are both solvable with length 4 but differs in the factors. G has an order |G| = 4224.
 
The following groups, denoted by G and H, are both solvable with length 4 but differs in the factors. G has an order |G| = 4224.
 
  5) G = <a,b | a^{2}b^{-4} = (ababab^{3})^{2} = 1>
 
  5) G = <a,b | a^{2}b^{-4} = (ababab^{3})^{2} = 1>
 
  6) H = <a,b | a^{2}b^{4} = (ababab^{3})^{2} = 1>
 
  6) H = <a,b | a^{2}b^{4} = (ababab^{3})^{2} = 1>
 
+
[[:ApCoCoA:Other5 groups|Computations of the other groups 5 and 6]]
  
 
=== Old Data at Ftp===
 
=== Old Data at Ftp===
 
ftp://apcocoa.org/pub/symbolic_data
 
ftp://apcocoa.org/pub/symbolic_data

Revision as of 11:35, 18 September 2013

Non-abelian Groups

Checklist of groups

Baumslag groups

Baumslag-Solitar groups are examples of two-generator one-relator groups.

BS(m,n) = <a,b | ba^{m} = a^{n}b> 

where m, n are natural numbers. Computations of Baumslag groups.

Another variation of the Baumslag groups, called the Baumslag-Gersten group, is defined by:

BG = <a,b | (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b) = a^{2}>

Computations of Baumslag-Gersten groups.

Braid groups

For a natural number n, the following is a presentation of the Braid group with n-1 generators and n strands.

B(n) = <g_{1},...,g_{n-1} | g_{i}g_{j} = g_{j}g_{i} for |i-j| >= 2, g_{i}g_{i+1}g_{i} = g_{i+1}g_{i}g_{i+1} for 1 <= i <= n-2>

Computations of Braid groups

Artin groups (Generalized Braid groups)

An Artin group (Generalized Braid group) is a group with a representation of the form

G = <x_{1},...,x_{n} | <x_1,x_2>^{m_{1,2}} = <x_2,x_1>^{m_{2,1}}, ... , <x_{n-1},x_{n}>^{m_{n-1,n}} = <x_{n},x_{n-1}>^{m_{n,n-1}}>

where m_{i,j} = m_{j,i} > 1

If m is not infinity <x_i,x_j>^{m} denotes an alterning product of x_i and x_j of length m beginning with x_i.

For example <x_1,x_2>^{4} = x_1x_2_x1_x2

If m is infinity there is no relation between x_i and x_j.

Computations of Artin groups

Cyclic groups

For a natural number n > 1 the cyclic groups can be represented as

C(n) = <a | a^{n} = 1>

Computations of cyclic groups

Dicyclic groups

Dic(n) = <a,b | a^{2n} = 1, a^{n} = b^{2}, b^{-1}ab = a^{-1}>

Computations of dicyclic groups

Dihedral groups

Dih(n) = <r,s | r^{n} = s^{2} = s^{-1}rs = r^{-1} = 1>

Computations of dihedral groups

von Dyck groups

The von Dyck groups are sometimes referred to as ordinary triangle groups and are subgroups of index 2 in Triangle(l, m, n) generated by words of even length in the generators a, b, c. A specific representation is given for x = ab, y = ca, yx = cb:

D(l,m,n) = <x,y | x^{l} = y^{m} = (xy)^{n} = 1>

Computations of von Dyck groups

Free abelian groups

Z(n) = <a_{1},...,a_{n} | [a_{i},a_{j}] = 1 for all i,j>

Computations of free abelian groups

Free groups

F(n) = <a_{1},...,a_{n} | a_{i}a_{i}^{-1} = a_{i}^{-1}a_{i} = 1>

Computations of free groups

Fibonacci groups

These groups have the following finite presentation:

F(2,m) = <x_{1},...,x_{m} | x_{i}x_{i+1} = x_{i+2}>

where the indices are taken modulo m. Computations of Fibonacci groups

Hecke groups

 H(lambda_q) = <x,y | x^2=(xy)^q=1, for q >= 3>

Computations of Hecke groups

Heisenberg groups

H(2k+1) = <a_{1},...,a_{k},b_{1},...,b_{k},c | [a_{i},b_{i}] = c, [a_{i},c] = [b_{i},c], [a_{i},b_{j}] = 1 for all i != j>

Computations of Heisenberg groups

Higman group

H = <a,b,c,d | a^{-1}ba = b^{2}, b^{-1}cb = c^{2}, c^{-1}dc = d^{2}, d^{-1}ad = a^{2}>

Computations of Higman groups

Ordinary tetrahedron groups

The Ordinary tetrahedron groups are groups with the following presentation where e_i >= 2 and f_i >= 2 for all i.

G(e_1,e_2,e_3,f_1,f_2,f_3) = <x,y,z | x^{e_1} = y^{e_2} = z^{e_3} = (xy^{-1})^{f_1} = (yz^{-1})^{f_2} = (zx^{-1})^{f_3} = 1>

Computations of Ordinary Tetrahedron groups

Lamplighter group

The Lamplighter group has the following presentation

 G = <a,b | (ab^{n}ab^{-n})^2 = 1>

for all n in Z. Computations of Lamplighter group

Symmetric groups

The symmetric groups have the following presentation for n > 0

 S_n = <a_{1},..,a_{n-1} | a_{i}^2 = 1, a_{i}a_{j} = a_{j}a_{i} for j != i +/- 1, (a_{i}a_{i+1})^3 = 1>

where a_{i} is the neighbor transposition a_{i} = (i,i+1) Computations of symmetric groups

Tetraeder group

The Tetraeder group has the following presentation

 A_4 = <a,b | a^2 = b^3 = (ab)^3 = 1>

Computations of the Tetraeder group

Oktaeder group

The Oktaeder group has the following presentation

 O = <a,b | a^2 = b^3 = (ab)^4 = 1>

Computations of the Oktaeder group

Ikosaeder group

The Ikosaeder group has the following presentation

 I = <a,b | a^2 = b^3 = (ab)^5 = 1>

Computations of the Ikosaeder group


Mathieu group M_{11}

The Mathieu group M_{22} has the following presentation

 M_{11} = <x,y | xy = y^{-3}x^{-4}, y[x^{-1},y^{-1}] = [x^{-1},y]x^{-1}>

Computations of the Mathieu group M_{11} References: EFFICIENT PRESENTATIONS FOR THREE SIMPLE GROUPS P.E. Kenne Department of Computer Science, Australian National University, GPO Box 4, Canberra ACT 2601.

Mathieu group M_{22}

The Mathieu group M_{22} has the following presentation

 M_{22} = <a,b | a^2 = (ab)^{11}, (ababb)^7 = b^4, (ab)^{2}(ab^{-1})^{2}abb(ab)^{2}ab^{-1}ab(abb)^2=b>

Computations of the Mathieu group M_{22} References: Efficient presentations for the Mathieu simple group M 22 and its cover Marston Conder, George Havas and Colin Ramsay

Quaternion group

The Quaternion group has the following presentation

 Q_8 = <a,b | a^4 = 1, x^2 = y^2, y^{-1}xy = x^{-1}>

Computations of the Quaternion group

Tits group

The Tits group has the following presentation

 T = <a,b | a^2 = b^3 = (ab)^13 = [a,b]^5 = [a,bab]^4 = ((ab)^4ab^{-1})^6 = 1 >

Computations of the Tits group

Special Linear group

The special linear group has the following presentation

 SL_2(Z) = <a,b | aba = bab, (aba)^4 = 1 >

Computations of the Special Linear group

Special Linear group SL_2(32)

The special linear group S_2(32) has the following presentation

 SL_2(32) = <a,b | b^3 = (ab)^{2} = a^{6}ba^{-2}ba^{2}b^{-1}a^{3}b^{-1}ab^{-1}a^{-3}b >

Computations of the Special Linear group SL_2(32) Reference: EFFICIENT PRESENTATIONS FOR THREE SIMPLE GROUPS P.E. Kenne Department of Computer Science, Australian National University, GPO Box 4, Canberra ACT 2601.

Special Linear group with prime p

The Special Linear group SL_2(p) has the following presentation

 SL_2(p) = (x,y | x^{2} =(xy)^{3},(xy^{4}xy^{t})^{2}y^{p}x^{2k}=1> 

Computations of the Special Linear group with prime p Reference: EFFICIENT PRESENTATIONS FOR FINITE SIMPLE GROUPS AND RELATED GROUPS Colin M. Campbell, E.F. Robertson and P.D. Williams* 1988

Modular group

The Modular group has the following presentation

 PSL(2,Z) = <a,b | a^2 = (ab)^3 = 1 >

Computations of the Modular group

Alternating groups

The Alternating groups have the following presentation

 A_{n+2} = <x_{1},..x_{n} | x_{i}^{3} = (x_{i}x_{j})^2 = 1 for every i != j>

Computations of the Alternating groups

Thompson group

T = <a,b | [ab^{-1},a^{-1}ba] = [ab^{-1},a^{-2}ba^{2}] = 1>
  = <x_{0},x_{1},x_{2},... | x_{k}^{-1}x_{n}x_{k} = x_{n+1} for all k < n> with a = x_{0}, x_{n} = a^{1-n}ba^{n-1}


Triangle groups

The triangle groups describe the application of reflections across the sides of a triangle (A,B,C) with the three reflections a,b,c and can be represented as the following:

Triangle(l,m,n) = {a,b,c | a^{2} = b^{2} = c^{2} = (ab)^{l} = (bc)^{m} = (ca)^{n} = 1}

There are three different cases depending on the choice of the parameters l,m,n:

The euclidian case:    1/l + 1/m + 1/n = 1
The spherical case:    1/l + 1/m + 1/n > 1
The hyperbolical case: 1/l + 1/m + 1/n < 1

Computations of the Triangle groups

Other groups

The following groups are either special cases of the groups above or hasn't been named yet.

The first example is a group which has the same count of generators and relations (#Generators = #Relations) and is solvable with length 6.

1) G = <a,b | a^{2}b^{-6} = (ab^{-1})^{3}ab^{-2}ab^{k}a^{-1}b = 1>
where k is congruent to 3 mod 6.

Computations of the other group 1

The next group, denoted by G, is the largest finite generalized triangle group and called the Rosenberger Monster. This group has an order |G| = 2^{20}*3^{4}*5.

2) G = <a,b | a^2 = b^3 = (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1>

Levai, Rosenberger and Souvignier showed that G is finite an the group below, denoted by H, is infinite.

3) H = <a,b | a^2 = b^3 = (abababab^{2}abab^{2}ab^{2})^2 = 1>

Computations of the other groups 2 and 3

This group is an example of a generalized triangle group with order |G| = 1440

4) G = <a,b | a^2 = b^3 = (ababab^{2})^{3} = 1>

Computations of the other group 4

The following groups, denoted by G and H, are both solvable with length 4 but differs in the factors. G has an order |G| = 4224.

5) G = <a,b | a^{2}b^{-4} = (ababab^{3})^{2} = 1>
6) H = <a,b | a^{2}b^{4} = (ababab^{3})^{2} = 1>

Computations of the other groups 5 and 6

Old Data at Ftp

ftp://apcocoa.org/pub/symbolic_data